A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and cluster...
Gespeichert in:
| Veröffentlicht in: | Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska Jg. 15; H. 3; S. 10 - 14 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Lublin University of Technology
30.09.2025
|
| Schlagworte: | |
| ISSN: | 2083-0157, 2391-6761 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques.
W niniejszym artykule proponujemy nowe podejście hybrydowe, które łączy algorytm uogólnionej optymalizacji rozkładu normalnego (GNDOA) i klasteryzację rozmytych C-średnich (FCM). Zostało ono zaprojektowane do przetwarzania nienadzorowanych zbiorów danych. Pomysł ten ma na celu rozwój konwencjonalnych opcji funkcji i technik klasteryzacji. Proponowany GNDOA-FCM wykorzystuje koncepcję znormalizowanego rozkładu normalnego wraz z FCM w celu uzyskania dokładniejszych i wydajniejszych wyników klasteryzacji, co prowadzi do przyspieszenia wykrywania w badanym regionie. Wskaźnik Calińskiego-Harabasza pomaga znaleźć liczbę klastrów, które charakteryzują się wysoką zwartością w obrębie każdego klastra, a także w odniesieniu do innych klastrów. Wydajność proponowanego hybrydowego podejścia GNDOA-FCM została dokładnie przetestowana przy użyciu różnych zestawów danych benchmarkowych. Wyniki porównano z istniejącymi metodami klastrowania przy użyciu wskaźników oceny, takich jak wynik sylwetki i dokładność wyboru cech. Wyniki eksperymentów pokazują, że proponowana metoda może być elastycznie dostosowana w celu uzyskania wyższej jakości klastrowania i jest bardziej skuteczna niż konwencjonalne techniki. |
|---|---|
| AbstractList | In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques. In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques. W niniejszym artykule proponujemy nowe podejście hybrydowe, które łączy algorytm uogólnionej optymalizacji rozkładu normalnego (GNDOA) i klasteryzację rozmytych C-średnich (FCM). Zostało ono zaprojektowane do przetwarzania nienadzorowanych zbiorów danych. Pomysł ten ma na celu rozwój konwencjonalnych opcji funkcji i technik klasteryzacji. Proponowany GNDOA-FCM wykorzystuje koncepcję znormalizowanego rozkładu normalnego wraz z FCM w celu uzyskania dokładniejszych i wydajniejszych wyników klasteryzacji, co prowadzi do przyspieszenia wykrywania w badanym regionie. Wskaźnik Calińskiego-Harabasza pomaga znaleźć liczbę klastrów, które charakteryzują się wysoką zwartością w obrębie każdego klastra, a także w odniesieniu do innych klastrów. Wydajność proponowanego hybrydowego podejścia GNDOA-FCM została dokładnie przetestowana przy użyciu różnych zestawów danych benchmarkowych. Wyniki porównano z istniejącymi metodami klastrowania przy użyciu wskaźników oceny, takich jak wynik sylwetki i dokładność wyboru cech. Wyniki eksperymentów pokazują, że proponowana metoda może być elastycznie dostosowana w celu uzyskania wyższej jakości klastrowania i jest bardziej skuteczna niż konwencjonalne techniki. |
| Author | Hussein, Talal Fadhil Ibrahim, Moatasem Mahmood Qasim, Omar Saber |
| Author_xml | – sequence: 1 givenname: Moatasem Mahmood orcidid: 0009-0006-5879-2196 surname: Ibrahim fullname: Ibrahim, Moatasem Mahmood – sequence: 2 givenname: Omar Saber orcidid: 0000-0003-3301-6271 surname: Qasim fullname: Qasim, Omar Saber – sequence: 3 givenname: Talal Fadhil surname: Hussein fullname: Hussein, Talal Fadhil |
| BookMark | eNpNkd1q3DAQhUVJoGmauzyAHqBOJMuy7MuwtE0g0Jv22oz-vNPakpG8tOt36btG2Q2lw8DMHJhvYM4HchFicITccnYnpOqae4RljPmu7Wv-jlzVoudVq1p-UXrWiYpxqd6Tm5xRMylLClVfkb8PdH_UCS2FZUkRzJ6aOGsMGEY6uuASTLg5S0NMM0zUYl4T6sOKMdC4rDjjBqcBpjEmXPczhWCpP2zbke6q2UHI9HfR6a6QQv6F1SMk0JA3isG6P9THRM10yKtLr0f_h34klx6m7G7e6jX58eXz991j9fzt69Pu4bkyNRe8UtZAV9eeu0YpaFjbKls7p7QwsnOtl7ZlmvclvGRKa9tKxRkXna-lLkvimjyduTbCz2FJOEM6DhFwOAkxjQOkFc3khgJQ1vVaOG6b8tNeeNl33ppGu64xrLA-nVkmxZyT8_94nA0np4azU8OrU-IFxyOOBA |
| Cites_doi | 10.54216/FPA.110105 10.1007/s40595-016-0086-9 10.1007/s42044-023-00160-x 10.1080/24725854.2024.2332910 10.17700/jai.2015.6.3.196 10.1109/TII.2021.3052531 10.1109/ACCESS.2024.3394541 10.3390/electronics12214467 10.1007/s10489-019-01626-x 10.1007/s11766-022-4489-3 10.1088/1742-6596/1897/1/012036 10.48084/etasr.7401 10.3390/e25071021 10.1016/j.envres.2022.114519 10.3390/brainsci10120949 10.1016/j.jksuci.2021.08.003 10.1016/j.swevo.2024.101661 10.6028/NIST.SP.260-202 10.18280/ijcmem.120208 10.1109/OJITS.2022.3149474 10.30871/jaic.v7i1.4947 10.1039/D3EN00796K 10.1088/1757-899X/569/5/052024 10.1016/j.enconman.2020.113301 10.3389/fnut.2023.1070808 10.1007/s10462-022-10182-9 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.35784/iapgos.6921 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2391-6761 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_5077de9b3e1d401593f598fdc4be84c0 10_35784_iapgos_6921 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 GROUPED_DOAJ Y2W |
| ID | FETCH-LOGICAL-c2131-7dca822f1e477a40667d2ee7b3c58e6f5d60b19999f507bbd65710138f25b1e43 |
| IEDL.DBID | DOA |
| ISSN | 2083-0157 |
| IngestDate | Mon Oct 13 19:21:38 EDT 2025 Sat Nov 29 07:22:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2131-7dca822f1e477a40667d2ee7b3c58e6f5d60b19999f507bbd65710138f25b1e43 |
| ORCID | 0000-0003-3301-6271 0009-0006-5879-2196 |
| OpenAccessLink | https://doaj.org/article/5077de9b3e1d401593f598fdc4be84c0 |
| PageCount | 5 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5077de9b3e1d401593f598fdc4be84c0 crossref_primary_10_35784_iapgos_6921 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-30 |
| PublicationDateYYYYMMDD | 2025-09-30 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska |
| PublicationYear | 2025 |
| Publisher | Lublin University of Technology |
| Publisher_xml | – name: Lublin University of Technology |
| References | 158688 158689 158700 158686 158687 158703 158704 158701 158702 158707 158708 158705 158706 158691 158692 158690 158695 158696 158693 158694 158699 158697 158698 158681 158684 158685 158682 158683 |
| References_xml | – ident: 158682 doi: 10.54216/FPA.110105 – ident: 158691 doi: 10.1007/s40595-016-0086-9 – ident: 158689 doi: 10.1007/s42044-023-00160-x – ident: 158693 doi: 10.1080/24725854.2024.2332910 – ident: 158685 doi: 10.17700/jai.2015.6.3.196 – ident: 158694 doi: 10.1109/TII.2021.3052531 – ident: 158683 doi: 10.1109/ACCESS.2024.3394541 – ident: 158692 doi: 10.3390/electronics12214467 – ident: 158696 doi: 10.1007/s10489-019-01626-x – ident: 158705 doi: 10.1007/s11766-022-4489-3 – ident: 158681 doi: 10.1088/1742-6596/1897/1/012036 – ident: 158687 doi: 10.48084/etasr.7401 – ident: 158695 doi: 10.3390/e25071021 – ident: 158708 doi: 10.1016/j.envres.2022.114519 – ident: 158698 doi: 10.3390/brainsci10120949 – ident: 158702 doi: 10.1016/j.jksuci.2021.08.003 – ident: 158688 – ident: 158700 doi: 10.1016/j.swevo.2024.101661 – ident: 158701 – ident: 158697 doi: 10.6028/NIST.SP.260-202 – ident: 158690 doi: 10.18280/ijcmem.120208 – ident: 158704 doi: 10.1109/OJITS.2022.3149474 – ident: 158684 doi: 10.30871/jaic.v7i1.4947 – ident: 158699 doi: 10.1039/D3EN00796K – ident: 158703 doi: 10.1088/1757-899X/569/5/052024 – ident: 158707 doi: 10.1016/j.enconman.2020.113301 – ident: 158686 doi: 10.3389/fnut.2023.1070808 – ident: 158706 doi: 10.1007/s10462-022-10182-9 |
| SSID | ssib055055372 ssib044739749 ssib017424439 ssib046627282 ssj0002875805 |
| Score | 2.3048422 |
| Snippet | In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 10 |
| SubjectTerms | Calinski-Harabasz index data mining feature selection fuzzy C-means clustering generalised normal distribution optimisation algorithm |
| Title | A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization |
| URI | https://doaj.org/article/5077de9b3e1d401593f598fdc4be84c0 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2391-6761 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875805 issn: 2083-0157 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2391-6761 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044739749 issn: 2083-0157 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07bxQxEMctFKWAAhEeIjyiKaBcsuu113YZokQpIKIAlG7l5-XQ3V50D6RcwTfhuzLj3eSWioZmi31qPSPPf6zxbxh7p-vS4iVX-Jh8IZSThXZRFI2WDsNbEDL3Bvz-SV1e6qsr82XU6otqwno8cD9wx6hXVIjG1bEKmAtIUydpdApeuKiFz9l6qcwomUJPQpmNYWvHuxRCYdzdJRqCsOd8R3UhmS7rYQfpj7zkhDo61z9y1CiYb0vVV80THEYcT-3NZLH60Bhe_RXPRtj_HJ_On7DHg7CEk_6HDtiD2D1lj0a4wWfs9wlc39IOLbgjiQP6m8stImDS86en2xigIyE7g0BQ3aEfFixwbpkPmzbBziaL5XR9PQfbBUib7fYWTot5xLgHtLILtOWLWmIXF5aKBlZbyFhGQIkMfrYhOgN9dPzS5-zb-dnX04tiaM9QeF7VVaGCtygvUhWFUlZQtWzgMSpXe6ljk2RoSkeUA5PQiM6FRqKcqWqduHT4UP2C7XWLLr5kIEKSkkfDk3ZCiWDR3NaUZahw0rHKH7L3d4Pc3vQUjhazl2yMtjdGS8Y4ZB_JAvf3EDs7n0CPagePav_lUa_-x0tes4ecOgXnypI3bG-93MS3bN__XE9Xy6PsrHj8_OvsD6I97dM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+combining+generalized+normal+distribution+optimization+algorithm+and+fuzzy+C-means+with+Calinski-Harabasz+index+for+clustering+optimization&rft.jtitle=Informatyka%2C+automatyka%2C+pomiary+w+gospodarce+i+ochronie+%C5%9Brodowiska&rft.au=Moatasem+Mahmood+Ibrahim&rft.au=Omar+Saber+Qasim&rft.au=Talal+Fadhil+Hussein&rft.date=2025-09-30&rft.pub=Lublin+University+of+Technology&rft.issn=2083-0157&rft.eissn=2391-6761&rft.volume=15&rft.issue=3&rft_id=info:doi/10.35784%2Fiapgos.6921&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5077de9b3e1d401593f598fdc4be84c0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-0157&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-0157&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-0157&client=summon |