A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and cluster...
Gespeichert in:
| Veröffentlicht in: | Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska Jg. 15; H. 3; S. 10 - 14 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Lublin University of Technology
30.09.2025
|
| Schlagworte: | |
| ISSN: | 2083-0157, 2391-6761 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques.
W niniejszym artykule proponujemy nowe podejście hybrydowe, które łączy algorytm uogólnionej optymalizacji rozkładu normalnego (GNDOA) i klasteryzację rozmytych C-średnich (FCM). Zostało ono zaprojektowane do przetwarzania nienadzorowanych zbiorów danych. Pomysł ten ma na celu rozwój konwencjonalnych opcji funkcji i technik klasteryzacji. Proponowany GNDOA-FCM wykorzystuje koncepcję znormalizowanego rozkładu normalnego wraz z FCM w celu uzyskania dokładniejszych i wydajniejszych wyników klasteryzacji, co prowadzi do przyspieszenia wykrywania w badanym regionie. Wskaźnik Calińskiego-Harabasza pomaga znaleźć liczbę klastrów, które charakteryzują się wysoką zwartością w obrębie każdego klastra, a także w odniesieniu do innych klastrów. Wydajność proponowanego hybrydowego podejścia GNDOA-FCM została dokładnie przetestowana przy użyciu różnych zestawów danych benchmarkowych. Wyniki porównano z istniejącymi metodami klastrowania przy użyciu wskaźników oceny, takich jak wynik sylwetki i dokładność wyboru cech. Wyniki eksperymentów pokazują, że proponowana metoda może być elastycznie dostosowana w celu uzyskania wyższej jakości klastrowania i jest bardziej skuteczna niż konwencjonalne techniki. |
|---|---|
| AbstractList | In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques.
W niniejszym artykule proponujemy nowe podejście hybrydowe, które łączy algorytm uogólnionej optymalizacji rozkładu normalnego (GNDOA) i klasteryzację rozmytych C-średnich (FCM). Zostało ono zaprojektowane do przetwarzania nienadzorowanych zbiorów danych. Pomysł ten ma na celu rozwój konwencjonalnych opcji funkcji i technik klasteryzacji. Proponowany GNDOA-FCM wykorzystuje koncepcję znormalizowanego rozkładu normalnego wraz z FCM w celu uzyskania dokładniejszych i wydajniejszych wyników klasteryzacji, co prowadzi do przyspieszenia wykrywania w badanym regionie. Wskaźnik Calińskiego-Harabasza pomaga znaleźć liczbę klastrów, które charakteryzują się wysoką zwartością w obrębie każdego klastra, a także w odniesieniu do innych klastrów. Wydajność proponowanego hybrydowego podejścia GNDOA-FCM została dokładnie przetestowana przy użyciu różnych zestawów danych benchmarkowych. Wyniki porównano z istniejącymi metodami klastrowania przy użyciu wskaźników oceny, takich jak wynik sylwetki i dokładność wyboru cech. Wyniki eksperymentów pokazują, że proponowana metoda może być elastycznie dostosowana w celu uzyskania wyższej jakości klastrowania i jest bardziej skuteczna niż konwencjonalne techniki. In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques. |
| Author | Hussein, Talal Fadhil Ibrahim, Moatasem Mahmood Qasim, Omar Saber |
| Author_xml | – sequence: 1 givenname: Moatasem Mahmood orcidid: 0009-0006-5879-2196 surname: Ibrahim fullname: Ibrahim, Moatasem Mahmood – sequence: 2 givenname: Omar Saber orcidid: 0000-0003-3301-6271 surname: Qasim fullname: Qasim, Omar Saber – sequence: 3 givenname: Talal Fadhil surname: Hussein fullname: Hussein, Talal Fadhil |
| BookMark | eNpNkd1q3DAQhUVJoGmauzyAHqBOJMuy7MuwtE0g0Jv22oz-vNPakpG8tOt36btG2Q2lw8DMHJhvYM4HchFicITccnYnpOqae4RljPmu7Wv-jlzVoudVq1p-UXrWiYpxqd6Tm5xRMylLClVfkb8PdH_UCS2FZUkRzJ6aOGsMGEY6uuASTLg5S0NMM0zUYl4T6sOKMdC4rDjjBqcBpjEmXPczhWCpP2zbke6q2UHI9HfR6a6QQv6F1SMk0JA3isG6P9THRM10yKtLr0f_h34klx6m7G7e6jX58eXz991j9fzt69Pu4bkyNRe8UtZAV9eeu0YpaFjbKls7p7QwsnOtl7ZlmvclvGRKa9tKxRkXna-lLkvimjyduTbCz2FJOEM6DhFwOAkxjQOkFc3khgJQ1vVaOG6b8tNeeNl33ppGu64xrLA-nVkmxZyT8_94nA0np4azU8OrU-IFxyOOBA |
| Cites_doi | 10.54216/FPA.110105 10.1007/s40595-016-0086-9 10.1007/s42044-023-00160-x 10.1080/24725854.2024.2332910 10.17700/jai.2015.6.3.196 10.1109/TII.2021.3052531 10.1109/ACCESS.2024.3394541 10.3390/electronics12214467 10.1007/s10489-019-01626-x 10.1007/s11766-022-4489-3 10.1088/1742-6596/1897/1/012036 10.48084/etasr.7401 10.3390/e25071021 10.1016/j.envres.2022.114519 10.3390/brainsci10120949 10.1016/j.jksuci.2021.08.003 10.1016/j.swevo.2024.101661 10.6028/NIST.SP.260-202 10.18280/ijcmem.120208 10.1109/OJITS.2022.3149474 10.30871/jaic.v7i1.4947 10.1039/D3EN00796K 10.1088/1757-899X/569/5/052024 10.1016/j.enconman.2020.113301 10.3389/fnut.2023.1070808 10.1007/s10462-022-10182-9 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.35784/iapgos.6921 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2391-6761 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_5077de9b3e1d401593f598fdc4be84c0 10_35784_iapgos_6921 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 GROUPED_DOAJ Y2W |
| ID | FETCH-LOGICAL-c2131-7dca822f1e477a40667d2ee7b3c58e6f5d60b19999f507bbd65710138f25b1e43 |
| IEDL.DBID | DOA |
| ISSN | 2083-0157 |
| IngestDate | Mon Oct 13 19:21:38 EDT 2025 Sat Nov 29 07:22:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2131-7dca822f1e477a40667d2ee7b3c58e6f5d60b19999f507bbd65710138f25b1e43 |
| ORCID | 0000-0003-3301-6271 0009-0006-5879-2196 |
| OpenAccessLink | https://doaj.org/article/5077de9b3e1d401593f598fdc4be84c0 |
| PageCount | 5 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5077de9b3e1d401593f598fdc4be84c0 crossref_primary_10_35784_iapgos_6921 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-30 |
| PublicationDateYYYYMMDD | 2025-09-30 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska |
| PublicationYear | 2025 |
| Publisher | Lublin University of Technology |
| Publisher_xml | – name: Lublin University of Technology |
| References | 158688 158689 158700 158686 158687 158703 158704 158701 158702 158707 158708 158705 158706 158691 158692 158690 158695 158696 158693 158694 158699 158697 158698 158681 158684 158685 158682 158683 |
| References_xml | – ident: 158682 doi: 10.54216/FPA.110105 – ident: 158691 doi: 10.1007/s40595-016-0086-9 – ident: 158689 doi: 10.1007/s42044-023-00160-x – ident: 158693 doi: 10.1080/24725854.2024.2332910 – ident: 158685 doi: 10.17700/jai.2015.6.3.196 – ident: 158694 doi: 10.1109/TII.2021.3052531 – ident: 158683 doi: 10.1109/ACCESS.2024.3394541 – ident: 158692 doi: 10.3390/electronics12214467 – ident: 158696 doi: 10.1007/s10489-019-01626-x – ident: 158705 doi: 10.1007/s11766-022-4489-3 – ident: 158681 doi: 10.1088/1742-6596/1897/1/012036 – ident: 158687 doi: 10.48084/etasr.7401 – ident: 158695 doi: 10.3390/e25071021 – ident: 158708 doi: 10.1016/j.envres.2022.114519 – ident: 158698 doi: 10.3390/brainsci10120949 – ident: 158702 doi: 10.1016/j.jksuci.2021.08.003 – ident: 158688 – ident: 158700 doi: 10.1016/j.swevo.2024.101661 – ident: 158701 – ident: 158697 doi: 10.6028/NIST.SP.260-202 – ident: 158690 doi: 10.18280/ijcmem.120208 – ident: 158704 doi: 10.1109/OJITS.2022.3149474 – ident: 158684 doi: 10.30871/jaic.v7i1.4947 – ident: 158699 doi: 10.1039/D3EN00796K – ident: 158703 doi: 10.1088/1757-899X/569/5/052024 – ident: 158707 doi: 10.1016/j.enconman.2020.113301 – ident: 158686 doi: 10.3389/fnut.2023.1070808 – ident: 158706 doi: 10.1007/s10462-022-10182-9 |
| SSID | ssib055055372 ssib044739749 ssib017424439 ssib046627282 ssj0002875805 |
| Score | 2.304747 |
| Snippet | In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 10 |
| SubjectTerms | Calinski-Harabasz index data mining feature selection fuzzy C-means clustering generalised normal distribution optimisation algorithm |
| Title | A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization |
| URI | https://doaj.org/article/5077de9b3e1d401593f598fdc4be84c0 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2391-6761 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875805 issn: 2083-0157 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2391-6761 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044739749 issn: 2083-0157 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T9xAEIZXCKUgRUQCUQghmiKUBtu7690tAYFoglIkEp21Xz4uuvOh-4jEFfwT_mtm1ibnVDQ0Lix7Le-MPO-sZ59h7Jv3WikbROYM_WYkBqTVQmcxcF45r7huRGo2oW5u9O2t-TFo9UU1YR0euJu4U9QrKkTjeCwC5gLS8EYa3QQvXNTCp2w9V2aQTKEnoczGsLXhXQqhMO5uEg1B2PNyQ3UhmS55v4P0d1pyQh2d6h9L1CiYb0vVVc0THEacju39aLY4qUxZ_BfPBtj_FJ-udtm7XljCWfdC79lWbD-wtwPc4B57OoO7B9qhBc8kcUB_c6lFBIw6_vR4HQO0JGQnEAiq2_fDghl-W6b9pk2wk9FsPl7eTcG2AZrVev0AF9k0YtwDWtkF2vJFLbGza0tFA4s1JCwjoEQGP1kRnYEeOhx0n_26uvx5cZ317RkyXxa8yFTwFuVFU0SB5hZULRvKGJXjXupYNTJUuSPKgWnQiM6FSqKcKdD6pXR4E__ItttZGz8xCD5yYQ3XukJbydx6kQfHteN55A0XB-z4eZLr-47CUWP2koxRd8aoyRgH7Jws8O8aYmenE-hRde9R9Use9fk1BjlkOyV1Ck6VJV_Y9nK-ikfsjf-zHC_mX5Oz4vH74-Vf2VntAA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+combining+generalized+normal+distribution+optimization+algorithm+and+fuzzy+C-means+with+Calinski-Harabasz+index+for+clustering+optimization&rft.jtitle=Informatyka%2C+Automatyka%2C+Pomiary+w+Gospodarce+i+Ochronie+%C5%9Arodowiska&rft.au=Ibrahim%2C+Moatasem+Mahmood&rft.au=Qasim%2C+Omar+Saber&rft.au=Hussein%2C+Talal+Fadhil&rft.date=2025-09-30&rft.issn=2083-0157&rft.eissn=2391-6761&rft.volume=15&rft.issue=3&rft.spage=10&rft.epage=14&rft_id=info:doi/10.35784%2Fiapgos.6921&rft.externalDBID=n%2Fa&rft.externalDocID=10_35784_iapgos_6921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-0157&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-0157&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-0157&client=summon |