Newton-type methods for nonlinearly constrained programming problems-algorithms and theory

For optimization problems including inequality constraints the well-known locally and superlinealy convergent methods of Levitin/Polyak, of Robinson and of Wilson (Recursive Quadratic Programming) lead to inequality constrained nonlinear subproblems. In the present paper optimization methods are int...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 19; číslo 3; s. 397 - 412
Hlavní autori: Kleinmichel, H., Schönefeld, K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Akademic-Verlag 01.01.1988
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For optimization problems including inequality constraints the well-known locally and superlinealy convergent methods of Levitin/Polyak, of Robinson and of Wilson (Recursive Quadratic Programming) lead to inequality constrained nonlinear subproblems. In the present paper optimization methods are introduced which are also locally and superlinearly convergent, but in contrast to the methods mentioned above the occurring subproblems are systems of linear equations. This results from the fact that the methods proposed are based on Newton's method for solving nonlinear equations.
ISSN:0233-1934
1029-4945
DOI:10.1080/02331938808843355