Multi-Source Partial Discharge Pattern Recognition Algorithm Based on DCGAN-YOLOv5
This study aims to overcome the complication that deep learning-based pattern recognition in partial discharge (PD) diagnosis of gas-insulated switchgear (GIS) can only identify single-source partial discharge but not multi-source partial discharge. Specifically, a GIS multi-source partial discharge...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on power delivery Jg. 40; H. 6; S. 2983 - 2992 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0885-8977, 1937-4208 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This study aims to overcome the complication that deep learning-based pattern recognition in partial discharge (PD) diagnosis of gas-insulated switchgear (GIS) can only identify single-source partial discharge but not multi-source partial discharge. Specifically, a GIS multi-source partial discharge detection algorithm based on Deep Convolution Generative Adversarial Networks and You Only Look Once (DCGAN-YOLOv5) is proposed. First, the Phase Resolved Partial Discharge (PRPD) features of multi-source PD are analyzed, a GIS experiment platform is established, and four typical PD defects are simulated. Besides, sample data are collected, and the DCGAN network is used for sample expansion. Then, a YOLOv5 network model is designed, and a spatial and channel attention mechanism is added to the feature extraction network with a positive sample equilibrium strategy. Finally, the effectiveness of the proposed algorithm is verified using laboratory data and field data collected from a 220 kV substation. The experimental results demonstrate that the proposed algorithm can effectively detect the multi-source PD features in PRPD patterns under complex noise and thus successfully identify the types of multi-source PD. The mean Average Precision (mAP) can reach 98.4%. The precision of single-source PD and multi-source PD can reach 95.2% and 89.3%, when testing with field data. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-8977 1937-4208 |
| DOI: | 10.1109/TPWRD.2022.3222317 |