A Nonterminating q -Clausen Formula and Some Related Product Formulas
This paper uses Gasper-s proof of Rogers- linearization formula for the continuous $q$-ultraspherical polynomials and a quadratic transformation formula for well-poised basic hypergeometric _2 \phi _1 $ series to derive a nonterminating $q$-analogue of Clausen-s formula for the square of a certain h...
Uložené v:
| Vydané v: | SIAM journal on mathematical analysis Ročník 20; číslo 5; s. 1270 - 1282 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.09.1989
|
| Predmet: | |
| ISSN: | 0036-1410, 1095-7154 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper uses Gasper-s proof of Rogers- linearization formula for the continuous $q$-ultraspherical polynomials and a quadratic transformation formula for well-poised basic hypergeometric _2 \phi _1 $ series to derive a nonterminating $q$-analogue of Clausen-s formula for the square of a certain hypergeometric series. This formula is extended to a $q$-analogue of the Ramanujan and Bailey extension of Clausen-s formula by employing the Gasper and Rahman nonterminating $q$-extension of the Sears-Carlitz quadratic transformation formula. Additional product formulas are derived. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1410 1095-7154 |
| DOI: | 10.1137/0520084 |