HYBRID BINARY WHALE OPTIMIZATION ALGORITHM BASED ON TAPER SHAPED TRANSFER FUNCTION FOR SOFTWARE DEFECT PREDICTION

Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. Th...

Full description

Saved in:
Bibliographic Details
Published in:Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska Vol. 13; no. 4; pp. 85 - 92
Main Authors: Hamed Alnaish, Zakaria A., Hasoon, Safwan O.
Format: Journal Article
Language:English
Published: Lublin University of Technology 20.12.2023
Subjects:
ISSN:2083-0157, 2391-6761
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. The objective of this paper is to propose a hybrid binary whale optimization algorithm (BWOA) based on taper-shape transfer functions for solving feature selection problems and dimension reduction with a KNN classifier as a new software defect prediction method. In this paper, the values of a real vector that represents the individual encoding have been converted to binary vector by using the four types of Taper-shaped transfer functions to enhance the performance of BWOA to reduce the dimension of the search space. The performance of the suggested method (T-BWOA-KNN) was evaluated using eleven standard software defect prediction datasets from the PROMISE and NASA repositories depending on the K-Nearest Neighbor (KNN) classifier. Seven evaluation metrics have been used to assess the effectiveness of the suggested method. The experimental results have shown that the performance of T-BWOA-KNN produced promising results compared to other methods including ten methods from the literature, four types of T-BWOA with the KNN classifier. In addition, the obtained results are compared and analyzed with other methods from the literature in terms of the average number of selected features (SF) and accuracy rate (ACC) using the Kendall W test. In this paper, a new hybrid software defect prediction method called T-BWOA-KNN has been proposed which is concerned with the feature selection problem. The experimental results have proved that T-BWOA-KNN produced promising performance compared with other methods for most datasets.
AbstractList Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. The objective of this paper is to propose a hybrid binary whale optimization algorithm (BWOA) based on taper-shape transfer functions for solving feature selection problems and dimension reduction with a KNN classifier as a new software defect prediction method. In this paper, the values of a real vector that represents the individual encoding have been converted to binary vector by using the four types of Taper-shaped transfer functions to enhance the performance of BWOA to reduce the dimension of the search space. The performance of the suggested method (T-BWOA-KNN) was evaluated using eleven standard software defect prediction datasets from the PROMISE and NASA repositories depending on the K-Nearest Neighbor (KNN) classifier. Seven evaluation metrics have been used to assess the effectiveness of the suggested method. The experimental results have shown that the performance of T-BWOA-KNN produced promising results compared to other methods including ten methods from the literature, four types of T-BWOA with the KNN classifier. In addition, the obtained results are compared and analyzed with other methods from the literature in terms of the average number of selected features (SF) and accuracy rate (ACC) using the Kendall W test. In this paper, a new hybrid software defect prediction method called T-BWOA-KNN has been proposed which is concerned with the feature selection problem. The experimental results have proved that T-BWOA-KNN produced promising performance compared with other methods for most datasets.
Author Hamed Alnaish, Zakaria A.
Hasoon, Safwan O.
Author_xml – sequence: 1
  givenname: Zakaria A.
  orcidid: 0000-0002-7597-5326
  surname: Hamed Alnaish
  fullname: Hamed Alnaish, Zakaria A.
– sequence: 2
  givenname: Safwan O.
  orcidid: 0000-0002-3653-3568
  surname: Hasoon
  fullname: Hasoon, Safwan O.
BookMark eNo9kFFvgjAUhZtlS-acb_sB_QHDtdTS8lgFpAmKQYxxL6SlxbA4cbCX_fshLktucu45N_d7OE_g_tycLQAvGE0JZXz2VqvLsemmM-r5d2DkEh87HvPwfb8jThyEKXsEk66rNaK0H8LcEfiKD_NMBnAu1yI7wH0skhCmm1yu5LvIZbqGIlmmmczjFZyLbRjAPsrFJszgNu4lgHkm1tuo99FuvRg-orQ_plG-F1kIgzAKFzncZGEgh_MzeKjUqbOTPx2DXRTmi9hJ0qVciMQpXYx9p6p8S7guWUk5xpwZ32rGKuP63LNWGUMN6r2vrGHGs8SzrGSs5C7yFOEGkzGQN65p1EdxaetP1f4UjaqLIWjaY6Ha77o82UJp7WpeckKQnlXcKoZmqDKaamN9Ra-s1xurbJuua231z8OoGNovbu0X1_bJL5OCcrA
Cites_doi 10.1007/978-981-33-6835-4_25
10.1109/TSE.2013.11
10.1109/ACCESS.2020.2964321
10.1198/108571105X46642
10.1155/2019/6230953
10.1016/j.mlwa.2021.100108
10.1016/j.infsof.2019.07.003
10.5121/ijdkp.2015.5201
10.1109/CEC.2018.8477975
10.1016/j.eswa.2018.12.033
10.1109/ACCESS.2021.3052149
10.5815/ijmecs.2020.01.03
10.1007/s00521-022-07203-7
10.2307/2529310
10.1016/j.swevo.2021.101022
10.1016/j.compbiomed.2021.104324
10.3390/e23101274
10.1016/j.jss.2021.111026
10.4018/IJOSSP.2019100101
10.3390/app9132764
10.1016/j.advengsoft.2016.01.008
10.1016/j.infsof.2018.10.004
10.3390/math8101821
10.1007/978-981-10-8863-6_9
10.1515/jisys-2022-0228
10.1007/s00607-016-0489-6
10.3390/sym13112166
10.1145/1868328.1868342
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.35784/iapgos.4569
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2391-6761
EndPage 92
ExternalDocumentID oai_doaj_org_article_abb2b8c8330b4f8ea7040fdb5bde9a51
10_35784_iapgos_4569
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
GROUPED_DOAJ
Y2W
ID FETCH-LOGICAL-c2119-ff9e38bc7c581187d9eb77fd2986eeadd5d077f9aed7d6e36e7c77c8206a38d13
IEDL.DBID DOA
ISSN 2083-0157
IngestDate Fri Oct 03 12:38:40 EDT 2025
Sat Nov 29 01:35:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2119-ff9e38bc7c581187d9eb77fd2986eeadd5d077f9aed7d6e36e7c77c8206a38d13
ORCID 0000-0002-7597-5326
0000-0002-3653-3568
OpenAccessLink https://doaj.org/article/abb2b8c8330b4f8ea7040fdb5bde9a51
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_abb2b8c8330b4f8ea7040fdb5bde9a51
crossref_primary_10_35784_iapgos_4569
PublicationCentury 2000
PublicationDate 2023-12-20
PublicationDateYYYYMMDD 2023-12-20
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-20
  day: 20
PublicationDecade 2020
PublicationTitle Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
PublicationYear 2023
Publisher Lublin University of Technology
Publisher_xml – name: Lublin University of Technology
References 104000
103991
104003
103990
104004
103993
104001
103992
104002
103984
103983
103986
103985
103988
103987
103989
103980
103982
103981
103995
103994
103975
103997
103996
103977
103999
103976
103998
103979
103978
References_xml – ident: 103978
  doi: 10.1007/978-981-33-6835-4_25
– ident: 103996
  doi: 10.1109/TSE.2013.11
– ident: 103999
  doi: 10.1109/ACCESS.2020.2964321
– ident: 103997
– ident: 103993
  doi: 10.1198/108571105X46642
– ident: 103982
  doi: 10.1155/2019/6230953
– ident: 103975
  doi: 10.1016/j.mlwa.2021.100108
– ident: 104003
  doi: 10.1016/j.infsof.2019.07.003
– ident: 103987
  doi: 10.5121/ijdkp.2015.5201
– ident: 103981
  doi: 10.1109/CEC.2018.8477975
– ident: 104000
  doi: 10.1016/j.eswa.2018.12.033
– ident: 103985
  doi: 10.1109/ACCESS.2021.3052149
– ident: 103990
  doi: 10.5815/ijmecs.2020.01.03
– ident: 103983
  doi: 10.1007/s00521-022-07203-7
– ident: 104001
– ident: 103992
  doi: 10.2307/2529310
– ident: 103986
  doi: 10.1016/j.swevo.2021.101022
– ident: 103998
  doi: 10.1016/j.compbiomed.2021.104324
– ident: 103980
  doi: 10.3390/e23101274
– ident: 104004
  doi: 10.1016/j.jss.2021.111026
– ident: 103976
  doi: 10.4018/IJOSSP.2019100101
– ident: 103977
  doi: 10.3390/app9132764
– ident: 103994
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 104002
  doi: 10.1016/j.infsof.2018.10.004
– ident: 103988
  doi: 10.3390/math8101821
– ident: 103989
  doi: 10.1007/978-981-10-8863-6_9
– ident: 103984
  doi: 10.1515/jisys-2022-0228
– ident: 103995
  doi: 10.1007/s00607-016-0489-6
– ident: 103979
  doi: 10.3390/sym13112166
– ident: 103991
  doi: 10.1145/1868328.1868342
SSID ssib055055372
ssib044739749
ssib017424439
ssib046627282
ssj0002875805
Score 2.255719
Snippet Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 85
SubjectTerms binary whale optimization algorithm
feature selection
software defect prediction
taper-shaped transfer function
Title HYBRID BINARY WHALE OPTIMIZATION ALGORITHM BASED ON TAPER SHAPED TRANSFER FUNCTION FOR SOFTWARE DEFECT PREDICTION
URI https://doaj.org/article/abb2b8c8330b4f8ea7040fdb5bde9a51
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2391-6761
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002875805
  issn: 2083-0157
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2391-6761
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044739749
  issn: 2083-0157
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT6wwFG6McaEL4-Ma3-lCl3ihBVqWjAMyiTITBqPeDekLo4vx7dLf7mkZnXF1N25o2gIJp18452tOv4PQEY0CLqmkXisD6oVxKDxhlO9JIoCOcBUpKVyxCVaW_Po6Gc2V-rI5YZ08cGc4W1KLSK448G4ZttwIBrBrtYykNolwh6eJz5I5MgVIgjAb3NZM7zIMGfjdGdEIrew5mam62DA9otMTpPduywniaJf_SCBGAb4dsS5r3orDhH_vxOPtw8sJBB_JD382J_vv_FO-hlangSVOuw9aRwtmsoFW5uQGN9FTcWNzaXBvUKbVDb4q0vMMD0c1_L_-ua0qnJ6fDatBXVzgXjrO-hiG6nSUVXhcQNPHdZWW4xz6-WXpsk8wkEg8Hub1VVpluJ_l2WmNYVX7Azf9B13mWX1aeNOSC56yUm9e2yaGcqmYirgtRK4TIxlrNUl4bAB0OtI-9BNhNNOxobFhijFlReAF5TqgW2hx8jAx2whLSgJBAu0TGYTwBFdxqwKrUAhrwzTZQcdfhmseO2WNBhiJM3DTGbixBt5BPWvV73usHrYbAJQ0U5Q0_0PJ7m-8ZA8t22LzNpmF-Pto8fX5zRygJfX-evfyfOgACNeLj-wT16_TCw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HYBRID+BINARY+WHALE+OPTIMIZATION+ALGORITHM+BASED+ON+TAPER+SHAPED+TRANSFER+FUNCTION+FOR+SOFTWARE+DEFECT+PREDICTION&rft.jtitle=Informatyka%2C+Automatyka%2C+Pomiary+w+Gospodarce+i+Ochronie+%C5%9Arodowiska&rft.au=Hamed+Alnaish%2C+Zakaria+A.&rft.au=Hasoon%2C+Safwan+O.&rft.date=2023-12-20&rft.issn=2083-0157&rft.eissn=2391-6761&rft.volume=13&rft.issue=4&rft.spage=85&rft.epage=92&rft_id=info:doi/10.35784%2Fiapgos.4569&rft.externalDBID=n%2Fa&rft.externalDocID=10_35784_iapgos_4569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-0157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-0157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-0157&client=summon