A Hybrid Optimization Method for Neural Tree Network Model
Neural tree network model has been successfully applied to solving large numbers of complex nonlinear problems in control area. The optimization of neural tree model contains: structure and parameter, the major problem in evolving structure without parameter information was noisy fitness evaluation...
Uloženo v:
| Vydáno v: | Applied Mechanics and Materials Ročník 273; s. 820 - 825 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Zurich
Trans Tech Publications Ltd
2013
|
| Témata: | |
| ISBN: | 9783037855881, 3037855886 |
| ISSN: | 1660-9336, 1662-7482, 1662-7482 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Neural tree network model has been successfully applied to solving large numbers of complex nonlinear problems in control area. The optimization of neural tree model contains: structure and parameter, the major problem in evolving structure without parameter information was noisy fitness evaluation problem, so an improved genetic programming algorithm is proposed to synthesize the optimization process. Simulation results on two time series prediction problems show that the proposed strategy is a potential method with better performance and effectiveness. |
|---|---|
| Bibliografie: | Selected, peer reviewed papers from the 2nd International Conference on Innovation Manufacturing and Engineering Management (IMEM 2012), December 14-16, 2012, Chongqing, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISBN: | 9783037855881 3037855886 |
| ISSN: | 1660-9336 1662-7482 1662-7482 |
| DOI: | 10.4028/www.scientific.net/AMM.273.820 |

