A Hybrid Optimization Method for Neural Tree Network Model
Neural tree network model has been successfully applied to solving large numbers of complex nonlinear problems in control area. The optimization of neural tree model contains: structure and parameter, the major problem in evolving structure without parameter information was noisy fitness evaluation...
Gespeichert in:
| Veröffentlicht in: | Applied Mechanics and Materials Jg. 273; S. 820 - 825 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Zurich
Trans Tech Publications Ltd
2013
|
| Schlagworte: | |
| ISBN: | 9783037855881, 3037855886 |
| ISSN: | 1660-9336, 1662-7482, 1662-7482 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Neural tree network model has been successfully applied to solving large numbers of complex nonlinear problems in control area. The optimization of neural tree model contains: structure and parameter, the major problem in evolving structure without parameter information was noisy fitness evaluation problem, so an improved genetic programming algorithm is proposed to synthesize the optimization process. Simulation results on two time series prediction problems show that the proposed strategy is a potential method with better performance and effectiveness. |
|---|---|
| Bibliographie: | Selected, peer reviewed papers from the 2nd International Conference on Innovation Manufacturing and Engineering Management (IMEM 2012), December 14-16, 2012, Chongqing, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISBN: | 9783037855881 3037855886 |
| ISSN: | 1660-9336 1662-7482 1662-7482 |
| DOI: | 10.4028/www.scientific.net/AMM.273.820 |

