Enhancing aquaculture water quality forecasting using novel adaptive multi-channel spatial-temporal graph convolutional network
In recent years, aquaculture has developed rapidly, especially in coastal and open ocean areas. In practice, water quality prediction is of critical importance. However, traditional water quality prediction models face limitations in handling complex spatiotemporal patterns. To address this challeng...
Uložené v:
| Vydané v: | International journal of agricultural and biological engineering Ročník 18; číslo 1; s. 279 - 291 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Beijing
International Journal of Agricultural and Biological Engineering (IJABE)
01.02.2025
|
| Predmet: | |
| ISSN: | 1934-6344, 1934-6352 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!