Landslide Susceptibility Assessment via Imbalanced Data Augmentation with Tabular Variational Autoencoder and Quality–Diversity Post-Selection

Landslides are among the most common geological hazards in mountainous regions, posing significant threats to resident safety and infrastructure stability. Due to the complexity of terrain and the difficulty of field surveys, landslide samples in these areas often suffer from class imbalance, which...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 15; číslo 22; s. 11965
Hlavní autoři: Xu, Zhengyang, Wang, Shitai, Yin, Min, Zhang, Xiaoyu, Lu, Zengyang, Yu, Songchao, Huang, Junjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2025
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Landslides are among the most common geological hazards in mountainous regions, posing significant threats to resident safety and infrastructure stability. Due to the complexity of terrain and the difficulty of field surveys, landslide samples in these areas often suffer from class imbalance, which undermines the accuracy of susceptibility models. To address this issue, this study constructed a multi-factor landslide database and employed a Tabular Variational Autoencoder (TVAE) to generate synthetic samples. A Quality–Diversity (QD) screening strategy was further integrated to enhance the representativeness and diversity of the augmented data. Experimental results demonstrate that the proposed TVAE–QD method improves model performance, with generated samples showing distributions closer to real data. Compared with the Synthetic Minority Over-sampling Technique (SMOTE) and unfiltered TVAE, the TVAE–QD method achieved higher predictive accuracy and exhibited greater robustness under progressive data augmentation. In the Random Forest (RF) model, the TVAE–QD achieved its best performance at a scale of 350, with an Area Under the Curve (AUC) of 0.923 and a Precision–Recall AUC (PR–AUC) of 0.907, outperforming TVAE and SMOTE. In the Light Gradient Boosting Machine (LightGBM) model, the AUC peaked at 0.911 at a scale of 450, while the PR–AUC reached its maximum of 0.896 at a scale of 200. Shapley Additive Explanations (SHAP) analysis confirmed that data augmentation preserved interpretability: dominant factors such as elevation, rainfall, and the Normalized Difference Vegetation Index (NDVI) remained stable, with only minor adjustments among secondary variables. Overall, the TVAE–QD framework effectively mitigates class imbalance and offers a promising technical solution for landslide risk assessment in mountainous regions.
AbstractList Landslides are among the most common geological hazards in mountainous regions, posing significant threats to resident safety and infrastructure stability. Due to the complexity of terrain and the difficulty of field surveys, landslide samples in these areas often suffer from class imbalance, which undermines the accuracy of susceptibility models. To address this issue, this study constructed a multi-factor landslide database and employed a Tabular Variational Autoencoder (TVAE) to generate synthetic samples. A Quality–Diversity (QD) screening strategy was further integrated to enhance the representativeness and diversity of the augmented data. Experimental results demonstrate that the proposed TVAE–QD method improves model performance, with generated samples showing distributions closer to real data. Compared with the Synthetic Minority Over-sampling Technique (SMOTE) and unfiltered TVAE, the TVAE–QD method achieved higher predictive accuracy and exhibited greater robustness under progressive data augmentation. In the Random Forest (RF) model, the TVAE–QD achieved its best performance at a scale of 350, with an Area Under the Curve (AUC) of 0.923 and a Precision–Recall AUC (PR–AUC) of 0.907, outperforming TVAE and SMOTE. In the Light Gradient Boosting Machine (LightGBM) model, the AUC peaked at 0.911 at a scale of 450, while the PR–AUC reached its maximum of 0.896 at a scale of 200. Shapley Additive Explanations (SHAP) analysis confirmed that data augmentation preserved interpretability: dominant factors such as elevation, rainfall, and the Normalized Difference Vegetation Index (NDVI) remained stable, with only minor adjustments among secondary variables. Overall, the TVAE–QD framework effectively mitigates class imbalance and offers a promising technical solution for landslide risk assessment in mountainous regions.
Audience Academic
Author Yu, Songchao
Yin, Min
Wang, Shitai
Lu, Zengyang
Zhang, Xiaoyu
Huang, Junjun
Xu, Zhengyang
Author_xml – sequence: 1
  givenname: Zhengyang
  surname: Xu
  fullname: Xu, Zhengyang
– sequence: 2
  givenname: Shitai
  surname: Wang
  fullname: Wang, Shitai
– sequence: 3
  givenname: Min
  surname: Yin
  fullname: Yin, Min
– sequence: 4
  givenname: Xiaoyu
  surname: Zhang
  fullname: Zhang, Xiaoyu
– sequence: 5
  givenname: Zengyang
  surname: Lu
  fullname: Lu, Zengyang
– sequence: 6
  givenname: Songchao
  surname: Yu
  fullname: Yu, Songchao
– sequence: 7
  givenname: Junjun
  surname: Huang
  fullname: Huang, Junjun
BookMark eNpNUctu1DAUjVCRKKU7PsASW6b1O_Fy1PIYaSRALWyja-dm8CgTB9sp6o5PQOIP-ZI6HYRqL2wfn3Oufc_L6mQMI1bVa0YvhDD0EqaJKc4ZM1o9q045rfVKSFafPNm_qM5T2tMyDBMNo6fV7y2MXRp8h-RmTg6n7K0ffL4n65QwpQOOmdx5IJuDhQFGhx25hgxkPe-WO8g-jOSnz9_JLdh5gEi-QfSPMAyFlQOOLnQYSSlEvsywmP_99efa32FMS6HPIeXVDQ7oFtGr6nkPQ8Lzf-tZ9fX9u9urj6vtpw-bq_V25Tht1AodcmSGN9gZzZigwklupeikQyWck2i1gMZwo-VyQGmtYSCbrvSIGi3Oqs3Rtwuwb6foDxDv2wC-fQRC3LUQs3cDtg1lDFkNWlErlbW2q1FBX0tt-lo7XrzeHL2mGH7MmHK7D3Ms_0-t4LVStPReFdbFkbWDYurHPuQIrswOD96VMHtf8HWjlVRU87oI3h4FLoaUIvb_n8lou2TePs1cPADLoaNl
Cites_doi 10.1038/s41598-025-97074-4
10.3390/app14145975
10.3390/ijerph16030368
10.3390/ijgi8010004
10.1007/s10064-024-03980-8
10.1080/19475705.2024.2314565
10.1007/s12145-025-01931-9
10.1109/MLDS.2017.21
10.1007/s42452-025-06798-5
10.1016/j.enggeo.2025.108021
10.1007/s00477-025-03118-6
10.1613/jair.953
10.1007/s12145-025-01700-8
10.1007/s11356-025-36615-w
10.1007/s11069-023-06104-9
10.3390/app14146040
10.1080/19475705.2020.1803421
10.3390/rs14235945
10.1016/j.asr.2025.05.020
10.1007/s12665-024-11442-3
10.3390/app15147646
10.3390/ijgi12050197
10.1007/s11069-025-07132-3
10.1016/j.eswa.2024.126084
10.1007/s10064-023-03403-0
10.1007/s11356-024-33287-w
10.1016/S0047-259X(02)00025-8
10.1016/j.asoc.2024.112223
10.1007/s10346-023-02166-9
10.3390/app14125324
10.1016/j.geomorph.2017.04.024
10.1007/s10661-023-12100-0
10.1007/s41748-024-00457-2
10.1007/s42452-020-03307-8
10.1007/s12145-025-01727-x
10.3390/app15147937
10.1016/j.sftr.2025.101119
10.1007/s00477-021-02165-z
10.1016/j.cageo.2021.104966
10.1016/j.eswa.2023.122778
10.1201/9781315140919
10.1007/s11069-024-06833-5
10.1093/biomet/63.3.413
10.1016/j.catena.2024.108639
10.1038/s41598-025-93704-z
10.1007/s10346-022-01998-1
10.3390/app14125042
10.1007/s10064-025-04490-x
10.1016/j.asoc.2023.110429
10.1007/s10064-025-04105-5
10.1109/TAI.2022.3229289
10.31590/ejosat.1077867
10.1007/s11069-020-04264-6
10.1007/s10346-024-02352-3
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app152211965
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Geology
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_8011e17a650b45bbbd7e5af7469f76c2
A865450627
10_3390_app152211965
GeographicLocations Puerto Rico
China
GeographicLocations_xml – name: China
– name: Puerto Rico
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2085-ece2e1928ed9611303c42b43d4ce53cc4eb63a892964c4ebe4bb91a48d5220963
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Mon Dec 01 19:27:30 EST 2025
Wed Nov 26 12:51:28 EST 2025
Tue Dec 02 03:53:41 EST 2025
Thu Nov 13 04:27:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2085-ece2e1928ed9611303c42b43d4ce53cc4eb63a892964c4ebe4bb91a48d5220963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/8011e17a650b45bbbd7e5af7469f76c2
PQID 3275503415
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_8011e17a650b45bbbd7e5af7469f76c2
proquest_journals_3275503415
gale_infotracacademiconefile_A865450627
crossref_primary_10_3390_app152211965
PublicationCentury 2000
PublicationDate 20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kim (ref_36) 2023; 82
ref_50
Li (ref_55) 2020; 104
ref_13
ref_12
ref_11
Wang (ref_45) 2024; 166
Chundawat (ref_43) 2024; 5
Li (ref_53) 2025; 84
Xu (ref_52) 2024; 32
Yang (ref_6) 2024; 83
Aitchison (ref_47) 1976; 63
Aksoy (ref_58) 2023; 195
Zhang (ref_38) 2022; 158
Lu (ref_44) 2024; 15
ref_25
Jiang (ref_21) 2024; 22
Ado (ref_18) 2025; 32
Khan (ref_35) 2024; 244
Lu (ref_1) 2025; 8
Yong (ref_15) 2022; 36
ref_28
Chen (ref_19) 2025; 18
Gao (ref_24) 2020; 2
ref_26
Chawla (ref_32) 2002; 16
Sato (ref_57) 2025; 249
Orefice (ref_10) 2024; 121
Zhang (ref_51) 2025; 84
ref_34
ref_31
Qian (ref_20) 2025; 76
Byeon (ref_42) 2025; 265
Schmaltz (ref_56) 2017; 290
Ali (ref_30) 2025; 10
ref_39
Wang (ref_4) 2025; 18
Zhao (ref_14) 2024; 31
Pande (ref_2) 2025; 7
Chen (ref_54) 2023; 118
Feng (ref_33) 2025; 350
Chen (ref_17) 2025; 121
Wu (ref_23) 2024; 83
Gupta (ref_22) 2022; 20
ref_46
Zhao (ref_16) 2025; 18
Zhao (ref_27) 2020; 11
ref_41
Li (ref_48) 2003; 86
ref_40
ref_3
Pham (ref_37) 2023; 143
Min (ref_29) 2023; 21
ref_49
ref_9
ref_8
ref_5
ref_7
References_xml – ident: ref_5
  doi: 10.1038/s41598-025-97074-4
– ident: ref_41
  doi: 10.3390/app14145975
– ident: ref_31
  doi: 10.3390/ijerph16030368
– ident: ref_39
  doi: 10.3390/ijgi8010004
– volume: 83
  start-page: 461
  year: 2024
  ident: ref_23
  article-title: Impact of sampling for landslide susceptibility assessment using interpretable machine learning models
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-024-03980-8
– volume: 15
  start-page: 2314565
  year: 2024
  ident: ref_44
  article-title: Landslide susceptibility analysis using random forest model with SMOTE-ENN resampling algorithm
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2024.2314565
– volume: 18
  start-page: 440
  year: 2025
  ident: ref_4
  article-title: The impact of different sampling strategies on landslide susceptibility assessment: An explainable hybrid BO-XGBoost model
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-025-01931-9
– ident: ref_28
  doi: 10.1109/MLDS.2017.21
– volume: 7
  start-page: 1109
  year: 2025
  ident: ref_2
  article-title: Integrating social vulnerability to improve landslide susceptibility assessment quality: A hybrid machine learning approach
  publication-title: Discov. Appl. Sci.
  doi: 10.1007/s42452-025-06798-5
– volume: 350
  start-page: 108021
  year: 2025
  ident: ref_33
  article-title: Prediction of landslide dam stability and influencing factors analysis
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2025.108021
– ident: ref_3
  doi: 10.1007/s00477-025-03118-6
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_32
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 18
  start-page: 190
  year: 2025
  ident: ref_16
  article-title: Landslide susceptibility assessment using information quantity and machine learning integrated models: A case study of Sichuan province, southwestern China
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-025-01700-8
– volume: 32
  start-page: 15746
  year: 2025
  ident: ref_18
  article-title: Hyper-parameter optimization for enhanced machine learning-based landslide susceptibility mapping
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-025-36615-w
– volume: 118
  start-page: 2543
  year: 2023
  ident: ref_54
  article-title: An innovative method for landslide susceptibility mapping supported by fractal theory, GeoDetector, and random forest: A case study in Sichuan Province, SW China
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-023-06104-9
– ident: ref_12
  doi: 10.3390/app14146040
– volume: 11
  start-page: 1542
  year: 2020
  ident: ref_27
  article-title: Using the rotation and random forest models of ensemble learning to predict landslide susceptibility
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2020.1803421
– volume: 32
  start-page: 1640
  year: 2024
  ident: ref_52
  article-title: Comparative analysis of landslide susceptibility assessment accuracy in different evaluation units
  publication-title: J. Eng. Geol.
– ident: ref_25
  doi: 10.3390/rs14235945
– volume: 76
  start-page: 699
  year: 2025
  ident: ref_20
  article-title: Optimizing the application of machine learning models in predicting landslide susceptibility using the information value model in Junlian County of Sichuan Basin
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2025.05.020
– volume: 83
  start-page: 132
  year: 2024
  ident: ref_6
  article-title: Effect of landslide spatial representation and raster resolution on the landslide susceptibility assessment
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-024-11442-3
– ident: ref_9
  doi: 10.3390/app15147646
– ident: ref_26
  doi: 10.3390/ijgi12050197
– volume: 121
  start-page: 8367
  year: 2025
  ident: ref_17
  article-title: Spatial prediction and mapping of landslide susceptibility using machine learning models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-025-07132-3
– volume: 8
  start-page: 281
  year: 2025
  ident: ref_1
  article-title: Landslide susceptibility assessment based on an interpretable coupled FR-RF model: A case study of Longyan City, Fujian Province, Southeast China
  publication-title: China Geol.
– volume: 265
  start-page: 126084
  year: 2025
  ident: ref_42
  article-title: Explainable hybrid tabular Variational Autoencoder and feature Tokenizer Transformer for depression prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.126084
– volume: 82
  start-page: 381
  year: 2023
  ident: ref_36
  article-title: Application of classification coupled with PCA and SMOTE, for obtaining safety factor of landslide based on HRA
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-023-03403-0
– volume: 31
  start-page: 32043
  year: 2024
  ident: ref_14
  article-title: Landslide susceptibility assessment based on frequency ratio and semi-supervised heterogeneous ensemble learning model
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-024-33287-w
– volume: 86
  start-page: 266
  year: 2003
  ident: ref_48
  article-title: Nonparametric estimation of distributions with categorical and continuous data
  publication-title: J. Multivar. Anal.
  doi: 10.1016/S0047-259X(02)00025-8
– volume: 166
  start-page: 112223
  year: 2024
  ident: ref_45
  article-title: Challenges and opportunities of generative models on tabular data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112223
– volume: 21
  start-page: 291
  year: 2023
  ident: ref_29
  article-title: Strategy of oversampling geotechnical parameters through geostatistical, SMOTE, and CTGAN methods for assessing susceptibility of landslide
  publication-title: Landslides
  doi: 10.1007/s10346-023-02166-9
– ident: ref_8
  doi: 10.3390/app14125324
– volume: 290
  start-page: 250
  year: 2017
  ident: ref_56
  article-title: The influence of forest cover on landslide occurrence explored with spatio-temporal information
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.04.024
– ident: ref_40
– volume: 195
  start-page: 1525
  year: 2023
  ident: ref_58
  article-title: Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility
  publication-title: Env. Monit Assess
  doi: 10.1007/s10661-023-12100-0
– ident: ref_49
  doi: 10.1007/s41748-024-00457-2
– volume: 2
  start-page: 1512
  year: 2020
  ident: ref_24
  article-title: Three oversampling methods applied in a comparative landslide spatial research in Penang Island, Malaysia
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03307-8
– volume: 18
  start-page: 225
  year: 2025
  ident: ref_19
  article-title: Optimizing landslide susceptibility mapping using integrated forest by penalizing attributes model with ensemble algorithms
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-025-01727-x
– ident: ref_13
  doi: 10.3390/app15147937
– volume: 10
  start-page: 101119
  year: 2025
  ident: ref_30
  article-title: Classification of imbalanced travel mode choice dataset with SMOTE and prediction using interpretable machine learning
  publication-title: Sustain. Futures
  doi: 10.1016/j.sftr.2025.101119
– volume: 36
  start-page: 2399
  year: 2022
  ident: ref_15
  article-title: Review of landslide susceptibility assessment based on knowledge mapping
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-021-02165-z
– volume: 158
  start-page: 104966
  year: 2022
  ident: ref_38
  article-title: Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104966
– ident: ref_50
– volume: 244
  start-page: 122778
  year: 2024
  ident: ref_35
  article-title: A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122778
– ident: ref_46
  doi: 10.1201/9781315140919
– volume: 121
  start-page: 2613
  year: 2024
  ident: ref_10
  article-title: Regional assessment of coastal landslide susceptibility in Liguria, Northern Italy, using MaxEnt
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-024-06833-5
– volume: 63
  start-page: 413
  year: 1976
  ident: ref_47
  article-title: Multivariate binary discrimination by the kernel method
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.413
– volume: 249
  start-page: 108639
  year: 2025
  ident: ref_57
  article-title: Variation in the frequency and characteristics of landslides in response to changes in forest cover and rainfall in Japan over the last century: A literature review
  publication-title: Catena
  doi: 10.1016/j.catena.2024.108639
– ident: ref_11
  doi: 10.1038/s41598-025-93704-z
– volume: 20
  start-page: 933
  year: 2022
  ident: ref_22
  article-title: Handling data imbalance in machine learning based landslide susceptibility mapping: A case study of Mandakini River Basin, North-Western Himalayas
  publication-title: Landslides
  doi: 10.1007/s10346-022-01998-1
– ident: ref_7
  doi: 10.3390/app14125042
– volume: 84
  start-page: 481
  year: 2025
  ident: ref_53
  article-title: Susceptibility assessment and driving factor analysis of geological hazards in complex landform areas: Insights from Sichuan, China
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-025-04490-x
– volume: 143
  start-page: 110429
  year: 2023
  ident: ref_37
  article-title: Examining the role of class imbalance handling strategies in predicting earthquake-induced landslide-prone regions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110429
– volume: 84
  start-page: 95
  year: 2025
  ident: ref_51
  article-title: Comparative study on landslide susceptibility assessment of different models: A case study of alpine mountainous region in Xinjiang
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-025-04105-5
– volume: 5
  start-page: 300
  year: 2024
  ident: ref_43
  article-title: A Universal Metric for Robust Evaluation of Synthetic Tabular Data
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2022.3229289
– ident: ref_34
  doi: 10.31590/ejosat.1077867
– volume: 104
  start-page: 2115
  year: 2020
  ident: ref_55
  article-title: Influence of human activity on landslide susceptibility development in the Three Gorges area
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04264-6
– volume: 22
  start-page: 189
  year: 2024
  ident: ref_21
  article-title: Investigating landslide data balancing for susceptibility mapping using generative and machine learning models
  publication-title: Landslides
  doi: 10.1007/s10346-024-02352-3
SSID ssj0000913810
Score 2.3347876
Snippet Landslides are among the most common geological hazards in mountainous regions, posing significant threats to resident safety and infrastructure stability. Due...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 11965
SubjectTerms Accuracy
Algorithms
China
class imbalance
data augmentation
Datasets
Disasters
Earthquakes
Emergency communications systems
Emergency preparedness
Geology
Hydrology
landslide susceptibility
Landslides
Landslides & mudslides
Lithology
Precipitation
Puerto Rico
quality–diversity
Rain and rainfall
Risk assessment
Risk management
Surveys
Tabular Variational Autoencoder
Topography
Variables
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BClI5AA1UDRS0BxBwsIjt9euEUtoCUhVVtKDeVvuYVJHapNhOpdz4CUj8w_6Szmw2IRe4cLS9fkgznvlmduYbgFdl36RVnsjIaVtRgIIy0kViolwTto2dLUfONwofFcNheXZWHYeEWxPKKpc20RtqN7WcI3-fJgWBabK52YerHxFPjeLd1TBC4y5sMFOZ7MDG3sHw-Osqy8Ksl2XcX1S8pxTf874wuSxezf5kzRd5yv6_GWbvbQ4f_e93PoaHAWeKwUIxtuAOTrrwYI19sAv3P_mpvvMubIU_vBFvAw31uyfw64i7gC_GDsXJrPHVL76Qdi4GKzZPcT3W4sul4fpIi07s61aLwez8MnQ0TQTnecWpNlztKr5TYB6Sj7SqnTKJpsNa0IvEgsxjfvPz9_6yVETwJOHoxE_qoZuewrfDg9OPn6MwvyGyPPkzQosJEoIs0VV5zM7SysTI1EmLWWqtRJOnuqx455cPUBpTxVqWjgREoVW6DZ3JdII7IAymBLyYOw0LWY5QS0vYgx7vZObSvuvB66Uk1dWCpkNReMMSV-sS78Eei3m1hsm1_Ylpfa7Cv6rIaccYF5rAq5GZMcYVmOlRIfNqVOQ26cEbVhLFJqCttdWhk4E-lcm01KDMCZcy_3MPdpdKooJtaNQfDXn278vPYTPhacO-83EXOm09wxdwz16346Z-GVT9FhqkC_I
  priority: 102
  providerName: ProQuest
Title Landslide Susceptibility Assessment via Imbalanced Data Augmentation with Tabular Variational Autoencoder and Quality–Diversity Post-Selection
URI https://www.proquest.com/docview/3275503415
https://doaj.org/article/8011e17a650b45bbbd7e5af7469f76c2
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB4h4NAeENBWXaDIB6rSQ1QSO3_HpYCKRFcroBU9Wf6ZrVYqC9rNInHjEZD6hn2SzjhelEvVC0dHTmJ5xp5v7JlvAPaqAyvrIlOJN64mBwVVYsrMJoUhbJt6V418SBQ-KweD6uqqHnZKfXFMWEsP3E7cJ9pBU0xLQ0jCqtxa60vMzagkt25UFi7svoR6Os5U2IPrlKmr2kh3SX493weTqWI-M7YjHRsUqPr_tSEHK3OyDmsRHop-O6wNWMLJJrzskAZuwkZcjjOxHzmjP76CxzNO2f019igu5rMQqhKiXu9F_4l6U9yNjTi9thzM6NCLI9MY0Z__vI7pRxPBh7Li0lgOTRXfyYuOJ4XUq7lhxkuPU0E_Ei3zxv2fh99Hi7gOwWV_k4tQVodeeg3fTo4vP39JYrGFxHGZzgQdZkhwr0JfFylbNqcyq6RXDnPpnEJbSFPVfE3LDVTW1qlRladZJT9IvoHlyc0E34KwKAklMdEZlqoaoVGOgAJ93qvcywPfg_eL6de3LaeGJl-ExaS7YurBIcvmqQ8zYYcHpB866of-n3704ANLVvN6babGmZh2QENl5ivdrwoCkUzW3IOdhfB1XMgzLbOSfDgy9fnWc4xmG15kXEA4JDPuwHIzneM7WHV3zXg23YWVw-PB8Hw36DK1hqdfhz_-AkJ1_QQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKaiwABqKCBSYBRWwsIjt8WuBUCCURk2jSA2orIZ5pYpEk-I4RdnxCUj8Bx_Fl3CvPQ7ZwK4Lln5HzvG9Z2buPQfgSdpWYRYH3DNSZzhAsdyTSaC8WCK39Y1Ox6ZsFO4ng0F6cpINN-Bn3QtDZZV1TCwDtZlpmiN_EQYJkmmMudGr8y8euUbR6mptoVHB4tAuv-KQbf6y18X_dy8I9t-O3hx4zlXA0-RH6VltA4u8JrUmi30K4ZoHioeGaxuFWnOr4lCmGa1H0oblSmW-5KlBqoKEP8T7XoFNjmBPG7A57B0NP65mdUhlM_XbVYV9GGZtWofGFEk6apS_1nJfaRHwt0RQZrf9W__be7kNNx2PZp0K-NuwYadNuLGmrtiEa-9K1-JlE7ZdBJuzZ05m-_kd-N6nLufPE2PZ8WJeVveUhcJL1lmplbKLiWS9M0X1n9oa1pWFZJ3F6Znr2JoymsdmI6mompd9kPnETa7iWcWMREKNzRk-iFViJctf335061IYRk7J3nHpRIQX7cD7S3ljd6ExnU3tPWDKhkgsSRvOJjwdW8k1ciu8veGRCdumBXs1csR5JUMicPhGCBPrCGvBa4LV6hwSDy93zPJT4WKRQFLiWz-RSM4Vj5RSJrGRHCc8zsZJrIMWPCVQCgpxRS61dJ0a-FNJLEx00hh5N-lbt2C3BqVwsW8u_iDy_r8PP4atg9FRX_R7g8MHcD0gZ-Wyy3MXGkW-sA_hqr4oJvP8kfvMGHy6bAT_Bo7iZ_I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFhAcgAYQgQJ7oAIOVmN7_XVAKBACUUMUqaUqp2W_XEWiSbGdotz4CUj8G34Ov4QZZx1ygVsPHJPYjmW_nXm7O_MewJO0o8IsDrhnpM5wgmK5J5NAebFEbusbneambhQeJqNRenycjTfgZ9MLQ2WVTUysA7WZaVoj3wuDBMk0xtxoL3dlEeNe_-XZF48cpGintbHTWEJk3y6-4vStfDHo4bveDYL-m8PX7zznMOBp8qb0rLaBRY6TWpPFPoVzzQPFQ8O1jUKtuVVxKNOM9ibpg-VKZb7kqUHaguQ_xOtegi2k5BzH2NZ48H78cbXCQ4qbqd9ZVtuHYdahPWlMl6SpRrlsLQ_WdgF_Swp1puvf_J-f0S244fg16y4HxDZs2GkLrq-pLrbgytvazXjRgm0X2Ur2zMlvP78N34fU_fx5Yiw7mJd11U9dQLxg3ZWKKTufSDY4VVQXqq1hPVlJ1p2fnLpOrimj9W12KBVV-bIjWUzcoiseVc1IPNTYguEfsaWIyeLXtx-9pkSGkYOyd1A7FOFJd-DDhTyxu7A5nU3tPWDKhkg4STPOJjzNreQaORde3vDIhB3Tht0GReJsKU8icFpHaBPraGvDK4LY6hgSFa-_mBUnwsUogWTFt34ikbQrHimlTGIjmSc8zvIk1kEbnhJABYW-qpBaug4OvFUSERPdNEY-TrrXbdhpACpcTCzFH3Te__fPj-EqwlYMB6P9B3AtIMPluvlzBzarYm4fwmV9Xk3K4pEbcQw-XTSAfwN_I3Cy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+Susceptibility+Assessment+via+Imbalanced+Data+Augmentation+with+Tabular+Variational+Autoencoder+and+Quality%E2%80%93Diversity+Post-Selection&rft.jtitle=Applied+sciences&rft.au=Xu%2C+Zhengyang&rft.au=Wang%2C+Shitai&rft.au=Yin%2C+Min&rft.au=Zhang%2C+Xiaoyu&rft.date=2025-11-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=22&rft_id=info:doi/10.3390%2Fapp152211965&rft.externalDocID=A865450627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon