Exponential convergence of a distributed divide-and-conquer algorithm for constrained convex optimization on networks

We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives attached to individual agents. The algorithm is fully distributed: each iteration solves local subproblems around selected fusion centers and c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expositiones mathematicae Ročník 43; číslo 6; s. 125740
Hlavní autori: Emirov, Nazar, Song, Guohui, Sun, Qiyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier GmbH 01.12.2025
Predmet:
ISSN:0723-0869
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives attached to individual agents. The algorithm is fully distributed: each iteration solves local subproblems around selected fusion centers and coordinates only with neighboring fusion centers. Under standard assumptions of smoothness, strong convexity, and locality on the objective function, together with polynomial growth conditions on the underlying graph, we establish exponential convergence of the DAC iterations and derive explicit bounds for both exact and inexact local solvers. Numerical experiments on three representative losses (L2 distance, quadratic, and entropy) confirm the theory and demonstrate scalability and effectiveness.
AbstractList We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives attached to individual agents. The algorithm is fully distributed: each iteration solves local subproblems around selected fusion centers and coordinates only with neighboring fusion centers. Under standard assumptions of smoothness, strong convexity, and locality on the objective function, together with polynomial growth conditions on the underlying graph, we establish exponential convergence of the DAC iterations and derive explicit bounds for both exact and inexact local solvers. Numerical experiments on three representative losses (L2 distance, quadratic, and entropy) confirm the theory and demonstrate scalability and effectiveness.
ArticleNumber 125740
Author Sun, Qiyu
Song, Guohui
Emirov, Nazar
Author_xml – sequence: 1
  givenname: Nazar
  surname: Emirov
  fullname: Emirov, Nazar
  email: nazaremirov@gmail.com
  organization: Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States of America
– sequence: 2
  givenname: Guohui
  surname: Song
  fullname: Song, Guohui
  email: gsong@odu.edu
  organization: Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States of America
– sequence: 3
  givenname: Qiyu
  orcidid: 0000-0002-0341-313X
  surname: Sun
  fullname: Sun, Qiyu
  email: qiyu.sun@ucf.edu
  organization: Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States of America
BookMark eNp9kMtOwzAQRb0oEm3hD1j4BxLsOInTDRKqykOqxAbWlmOPW5fGLrZbCl9PQlgjjTSzuPdodGZo4rwDhG4oySmh9e0uh3Mn0zYvSFHltKh4SSZoSnjBMtLUi0s0i3FHCONV2UzRcXU-9ACXrNxj5d0JwgacAuwNlljbmIJtjwl0f5-shkw6nfW5jyMELPcbH2zadtj4MLT7tLSuD_-Sztgfku3st0zWO9yPg_Tpw3u8QhdG7iNc_-05entYvS6fsvXL4_Pyfp2pgjQ0Y2TBNdN1S9VCl8xIYjjQopGSklJppkxVM6BcG8pVw4g0suWaF6Zu2YJSxuaoHLkq-BgDGHEItpPhS1AiBl1iJ0ZdYtAlRl197W6sQf_byUIQUdnBirYBVBLa2_8BPwIKfRg
Cites_doi 10.1016/j.acha.2017.07.007
10.1016/j.acha.2023.101623
10.1137/16M1084316
10.1109/LCSYS.2019.2923078
10.1090/S0002-9947-06-03841-4
10.1103/PhysRev.106.620
10.1016/j.automatica.2017.07.003
10.1016/j.arcontrol.2019.05.006
10.1090/S0025-5718-1984-0758197-9
10.1007/s10444-013-9314-3
10.1137/14096668X
10.1109/TAC.2019.2912494
10.1109/TAC.2014.2308612
10.1007/s00365-010-9121-8
10.1137/15M1049294
10.1090/S0002-9947-07-04303-6
10.1007/978-3-319-00825-7
10.1016/j.laa.2006.11.003
10.1109/TII.2012.2219061
10.1016/j.jfa.2018.09.014
10.1023/A:1007379606734
10.1109/TAC.2008.2009515
10.1561/2200000016
ContentType Journal Article
Copyright 2025 Elsevier GmbH
Copyright_xml – notice: 2025 Elsevier GmbH
DBID AAYXX
CITATION
DOI 10.1016/j.exmath.2025.125740
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_exmath_2025_125740
S0723086925000957
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1816313; DMS-2318781
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--M
-DZ
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9DU
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c2081-3097d3d6b1c9d43fa0f7e128aa104cd3cf563e17df17c830afab7d72f6b391133
ISSN 0723-0869
IngestDate Thu Nov 27 01:07:29 EST 2025
Wed Dec 10 14:31:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords secondary
Constrained convex optimization on network
Distributed and decentralized algorithm
Divide and conquer algorithm
primary
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2081-3097d3d6b1c9d43fa0f7e128aa104cd3cf563e17df17c830afab7d72f6b391133
ORCID 0000-0002-0341-313X
ParticipantIDs crossref_primary_10_1016_j_exmath_2025_125740
elsevier_sciencedirect_doi_10_1016_j_exmath_2025_125740
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Expositiones mathematicae
PublicationYear 2025
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Cheng, Jiang, Sun (b8) 2019; 47
Motee, Sun (b16) 2017; 55
Bertsekas, Tsitsiklis (b2) 2015
Boyd, Parikh, Chu, Peleato, Eckstein (b3) 2011; 3
Nedić, Olshevsky, Shi (b17) 2017; 27
Penrose (b21) 2003
Falsone, Margellos, Garatti, Prandini (b11) 2017; 84
Yang, Yang, Hu (b31) 2013
Nedich (b19) 2015
Agresti (b1) 2002
Yang, Johansson (b30) 2010; vol. 406
Nesterov, Nemirovskii (b20) 1994
Sun (b27) 2011; 34
Yang, Yi, Wu, Yuan, Wu, Meng, Hong, Wang, Lin, Johansson (b32) 2019; 47
Demko, Moss, Smith (b9) 1984; 43
Jaynes (b13) 1957; 106
Sheffi (b23) 1985
Chang, Nedić, Scaglione (b7) 2014; 59
Cao, Yu, Ren, Chen (b4) 2013; 9
Shin, Sun (b25) 2019; 276
Gröchenig, Leinert (b12) 2006; 358
Caruana (b6) 1997; 28
Shi, Ling, Wu, Yin (b24) 2015; 25
Emirov, Song, Sun (b10) 2024; 70
Nedic, Ozdaglar (b18) 2009; 54
Markowitz (b15) 1952; 7
Plesník (b22) 2007; 422
Sun (b28) 2014; 40
Sun (b26) 2007; 359
Wood, Wollenberg, Sheblé (b29) 2013
Carli, Dotoli (b5) 2020; 4
Liang, Wang, Yin (b14) 2020; 65
Zeidler (b33) 1990
Gröchenig (10.1016/j.exmath.2025.125740_b12) 2006; 358
Markowitz (10.1016/j.exmath.2025.125740_b15) 1952; 7
Wood (10.1016/j.exmath.2025.125740_b29) 2013
Yang (10.1016/j.exmath.2025.125740_b31) 2013
Nedić (10.1016/j.exmath.2025.125740_b17) 2017; 27
Penrose (10.1016/j.exmath.2025.125740_b21) 2003
Cheng (10.1016/j.exmath.2025.125740_b8) 2019; 47
Nesterov (10.1016/j.exmath.2025.125740_b20) 1994
Motee (10.1016/j.exmath.2025.125740_b16) 2017; 55
Plesník (10.1016/j.exmath.2025.125740_b22) 2007; 422
Agresti (10.1016/j.exmath.2025.125740_b1) 2002
Bertsekas (10.1016/j.exmath.2025.125740_b2) 2015
Yang (10.1016/j.exmath.2025.125740_b32) 2019; 47
Nedic (10.1016/j.exmath.2025.125740_b18) 2009; 54
Shi (10.1016/j.exmath.2025.125740_b24) 2015; 25
Chang (10.1016/j.exmath.2025.125740_b7) 2014; 59
Shin (10.1016/j.exmath.2025.125740_b25) 2019; 276
Liang (10.1016/j.exmath.2025.125740_b14) 2020; 65
Jaynes (10.1016/j.exmath.2025.125740_b13) 1957; 106
Emirov (10.1016/j.exmath.2025.125740_b10) 2024; 70
Nedich (10.1016/j.exmath.2025.125740_b19) 2015
Sun (10.1016/j.exmath.2025.125740_b28) 2014; 40
Demko (10.1016/j.exmath.2025.125740_b9) 1984; 43
Sun (10.1016/j.exmath.2025.125740_b27) 2011; 34
Caruana (10.1016/j.exmath.2025.125740_b6) 1997; 28
Sun (10.1016/j.exmath.2025.125740_b26) 2007; 359
Cao (10.1016/j.exmath.2025.125740_b4) 2013; 9
Carli (10.1016/j.exmath.2025.125740_b5) 2020; 4
Sheffi (10.1016/j.exmath.2025.125740_b23) 1985
Falsone (10.1016/j.exmath.2025.125740_b11) 2017; 84
Zeidler (10.1016/j.exmath.2025.125740_b33) 1990
Boyd (10.1016/j.exmath.2025.125740_b3) 2011; 3
Yang (10.1016/j.exmath.2025.125740_b30) 2010; vol. 406
References_xml – year: 2002
  ident: b1
  article-title: Categorical Data Analysis
  publication-title: Wiley Series in Probability and Statistics
– volume: 27
  start-page: 2597
  year: 2017
  end-page: 2633
  ident: b17
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM J. Optim.
– volume: 359
  start-page: 3099
  year: 2007
  end-page: 3123
  ident: b26
  article-title: Wiener’s lemma for infinite matrices
  publication-title: Trans. Amer. Math. Soc.
– volume: 106
  start-page: 620
  year: 1957
  end-page: 630
  ident: b13
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
– volume: 70
  year: 2024
  ident: b10
  article-title: A divide-and-conquer algorithm for distributed optimization on networks
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 358
  start-page: 2695
  year: 2006
  end-page: 2711
  ident: b12
  article-title: Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices
  publication-title: Trans. Amer. Math. Soc.
– start-page: 1
  year: 2015
  end-page: 100
  ident: b19
  article-title: Convergence rate of distributed averaging dynamics and optimization in networks
– volume: 47
  start-page: 278
  year: 2019
  end-page: 305
  ident: b32
  article-title: A survey of distributed optimization
  publication-title: Annu. Rev. Control.
– year: 1985
  ident: b23
  article-title: Urban Transportation Networks
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: b3
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 4
  start-page: 247
  year: 2020
  end-page: 252
  ident: b5
  article-title: Distributed alternating direction method of multipliers for linearly constrained optimization over a network
  publication-title: IEEE Control. Syst. Lett.
– volume: 47
  start-page: 109
  year: 2019
  end-page: 148
  ident: b8
  article-title: Spatially distributed sampling and reconstruction
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 43
  start-page: 491
  year: 1984
  end-page: 499
  ident: b9
  article-title: Decay rates for inverses of band matrices
  publication-title: Math. Comp.
– volume: 276
  start-page: 148
  year: 2019
  end-page: 182
  ident: b25
  article-title: Polynomial control on stability, inversion and powers of matrices on simple graphs
  publication-title: J. Funct. Anal.
– year: 2013
  ident: b29
  article-title: Power Generation, Operation, and Control
– volume: 9
  start-page: 427
  year: 2013
  end-page: 438
  ident: b4
  article-title: An overview of recent progress in the study of distributed multi-agent coordination
  publication-title: IEEE Trans. Ind. Informatics
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: b18
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
– year: 2015
  ident: b2
  article-title: Parallel and Distributed Computation: Numerical Methods
– volume: 7
  start-page: 77
  year: 1952
  end-page: 91
  ident: b15
  article-title: Portfolio selection
  publication-title: J. Financ.
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: b6
  article-title: Multitask learning
  publication-title: Mach. Learn.
– year: 1990
  ident: b33
  article-title: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators
  publication-title: Zeidler, E.: Nonlinear Functional Analysis
– volume: 25
  start-page: 944
  year: 2015
  end-page: 966
  ident: b24
  article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM J. Optim.
– volume: 65
  start-page: 347
  year: 2020
  end-page: 353
  ident: b14
  article-title: Distributed smooth convex optimization with coupled constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 40
  start-page: 415
  year: 2014
  end-page: 458
  ident: b28
  article-title: Localized nonlinear functional equations and two sampling problems in signal processing
  publication-title: Adv. Comput. Math.
– volume: vol. 406
  start-page: 109
  year: 2010
  end-page: 148
  ident: b30
  article-title: Distributed optimization and games: A tutorial overview
  publication-title: Networked Control Systems
– year: 1994
  ident: b20
  article-title: Interior-Point Polynomial Algorithms in Convex Programming
– year: 2003
  ident: b21
  article-title: Random Geometric Graphs
– volume: 55
  start-page: 200
  year: 2017
  end-page: 235
  ident: b16
  article-title: Sparsity and spatial localization measures for spatially distributed systems
  publication-title: SIAM J. Control Optim.
– year: 2013
  ident: b31
  article-title: The Hardy space
  publication-title: Lecture Notes in Mathematics
– volume: 34
  start-page: 209
  year: 2011
  end-page: 235
  ident: b27
  article-title: Wiener’s lemma for infinite matrices II
  publication-title: Constr. Approx.
– volume: 84
  start-page: 149
  year: 2017
  end-page: 158
  ident: b11
  article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints
  publication-title: Automatica
– volume: 422
  start-page: 455
  year: 2007
  end-page: 470
  ident: b22
  article-title: Finding the orthogonal projection of a point onto an affine subspace
  publication-title: Linear Algebra Appl.
– volume: 59
  start-page: 1524
  year: 2014
  end-page: 1538
  ident: b7
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Trans. Autom. Control
– year: 2003
  ident: 10.1016/j.exmath.2025.125740_b21
– volume: 47
  start-page: 109
  issue: 1
  year: 2019
  ident: 10.1016/j.exmath.2025.125740_b8
  article-title: Spatially distributed sampling and reconstruction
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2017.07.007
– volume: 70
  year: 2024
  ident: 10.1016/j.exmath.2025.125740_b10
  article-title: A divide-and-conquer algorithm for distributed optimization on networks
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2023.101623
– volume: 27
  start-page: 2597
  issue: 4
  year: 2017
  ident: 10.1016/j.exmath.2025.125740_b17
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1084316
– volume: 4
  start-page: 247
  issue: 1
  year: 2020
  ident: 10.1016/j.exmath.2025.125740_b5
  article-title: Distributed alternating direction method of multipliers for linearly constrained optimization over a network
  publication-title: IEEE Control. Syst. Lett.
  doi: 10.1109/LCSYS.2019.2923078
– start-page: 1
  year: 2015
  ident: 10.1016/j.exmath.2025.125740_b19
– volume: 358
  start-page: 2695
  issue: 6
  year: 2006
  ident: 10.1016/j.exmath.2025.125740_b12
  article-title: Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-06-03841-4
– volume: 106
  start-page: 620
  issue: 4
  year: 1957
  ident: 10.1016/j.exmath.2025.125740_b13
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
– volume: 84
  start-page: 149
  year: 2017
  ident: 10.1016/j.exmath.2025.125740_b11
  article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.07.003
– volume: 47
  start-page: 278
  year: 2019
  ident: 10.1016/j.exmath.2025.125740_b32
  article-title: A survey of distributed optimization
  publication-title: Annu. Rev. Control.
  doi: 10.1016/j.arcontrol.2019.05.006
– year: 1990
  ident: 10.1016/j.exmath.2025.125740_b33
  article-title: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators
– volume: 43
  start-page: 491
  issue: 168
  year: 1984
  ident: 10.1016/j.exmath.2025.125740_b9
  article-title: Decay rates for inverses of band matrices
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1984-0758197-9
– volume: 40
  start-page: 415
  issue: 2
  year: 2014
  ident: 10.1016/j.exmath.2025.125740_b28
  article-title: Localized nonlinear functional equations and two sampling problems in signal processing
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-013-9314-3
– volume: 25
  start-page: 944
  issue: 2
  year: 2015
  ident: 10.1016/j.exmath.2025.125740_b24
  article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/14096668X
– volume: 65
  start-page: 347
  issue: 1
  year: 2020
  ident: 10.1016/j.exmath.2025.125740_b14
  article-title: Distributed smooth convex optimization with coupled constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2912494
– volume: 59
  start-page: 1524
  issue: 6
  year: 2014
  ident: 10.1016/j.exmath.2025.125740_b7
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2308612
– year: 2013
  ident: 10.1016/j.exmath.2025.125740_b29
– volume: 34
  start-page: 209
  issue: 2
  year: 2011
  ident: 10.1016/j.exmath.2025.125740_b27
  article-title: Wiener’s lemma for infinite matrices II
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-010-9121-8
– volume: 55
  start-page: 200
  issue: 1
  year: 2017
  ident: 10.1016/j.exmath.2025.125740_b16
  article-title: Sparsity and spatial localization measures for spatially distributed systems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/15M1049294
– volume: 359
  start-page: 3099
  issue: 7
  year: 2007
  ident: 10.1016/j.exmath.2025.125740_b26
  article-title: Wiener’s lemma for infinite matrices
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-07-04303-6
– year: 2013
  ident: 10.1016/j.exmath.2025.125740_b31
  article-title: The Hardy space H1 with non-doubling measures and their applications
  doi: 10.1007/978-3-319-00825-7
– year: 2015
  ident: 10.1016/j.exmath.2025.125740_b2
– volume: 422
  start-page: 455
  issue: 2
  year: 2007
  ident: 10.1016/j.exmath.2025.125740_b22
  article-title: Finding the orthogonal projection of a point onto an affine subspace
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2006.11.003
– year: 2002
  ident: 10.1016/j.exmath.2025.125740_b1
  article-title: Categorical Data Analysis
– year: 1985
  ident: 10.1016/j.exmath.2025.125740_b23
– volume: 7
  start-page: 77
  issue: 1
  year: 1952
  ident: 10.1016/j.exmath.2025.125740_b15
  article-title: Portfolio selection
  publication-title: J. Financ.
– year: 1994
  ident: 10.1016/j.exmath.2025.125740_b20
– volume: 9
  start-page: 427
  issue: 1
  year: 2013
  ident: 10.1016/j.exmath.2025.125740_b4
  article-title: An overview of recent progress in the study of distributed multi-agent coordination
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2012.2219061
– volume: 276
  start-page: 148
  issue: 1
  year: 2019
  ident: 10.1016/j.exmath.2025.125740_b25
  article-title: Polynomial control on stability, inversion and powers of matrices on simple graphs
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2018.09.014
– volume: vol. 406
  start-page: 109
  year: 2010
  ident: 10.1016/j.exmath.2025.125740_b30
  article-title: Distributed optimization and games: A tutorial overview
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 10.1016/j.exmath.2025.125740_b6
  article-title: Multitask learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.exmath.2025.125740_b18
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.exmath.2025.125740_b3
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
SSID ssj0037548
Score 2.3506243
Snippet We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 125740
SubjectTerms Constrained convex optimization on network
Distributed and decentralized algorithm
Divide and conquer algorithm
Title Exponential convergence of a distributed divide-and-conquer algorithm for constrained convex optimization on networks
URI https://dx.doi.org/10.1016/j.exmath.2025.125740
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0723-0869
  databaseCode: AIEXJ
  dateStart: 20211212
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0037548
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZuoftYeyTteuGHvYWVBzJtqzHMtJ9wMrGOsibkS15dWns4MTB7Xv_750s21GXUdaHQTDByOeP-3F3kn53h9B7iBio9lJBfDDAxGd0SmSkJOEJ-I5EB1mYJm2zCX56Gs3n4ttodNPnwmwueVFETSOW_1XVcA6UbVJn76HuQSicgP-gdDiC2uH4T4qfNcuyMBygtvJHsbHpldomQipTJ9e0uII4s83E0kQWisA48A_VRF7-Kqt8fb5o2YepiR1NCwmtrKRmUoKFWXSpm2afobAs8tWtBf6mZ4Lp1WQxlIWVA4Rmi7wqN9a2X8uBHfyjYwd_rMvzOt_uVrV28Xt-VbsrFDRw2B7WkHHKCEydhGt1bXGmDl2uCYWIi9sKTjvW3S40XByZ1eG12UmiwdF2-O1i2n84uYF62LPaLmIrJTZSYivlAdqjPBDRGO0df57Nv_Qu3bQJbl16_yJ9DmZLFNx9mr_HOE7ccvYUPekmHPjYAuUZGuniOXr8dVDL6gWqHchgBzK4zLDEDmTwLmTwABkMkMEOZKykBruQwfDrIfMS_TyZnX34RLp2HCSlEDgS5gmumAqTaSqUzzLpZVxDeCMlTOlTxdIsCJmecpVNeRoxT2Yy4YrTLEwYuFTGXqFxAW_zGmEaaqEiyShTAmYEQiYi8hM_Up7QMDLZR6T_gPHSVl2J71LcPuL9V467yNFGhDFA584rD-55pzfo0Rbih2i8rmr9Fj1MN-t8Vb3rcPMbLWaZGA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+convergence+of+a+distributed+divide-and-conquer+algorithm+for+constrained+convex+optimization+on+networks&rft.jtitle=Expositiones+mathematicae&rft.au=Emirov%2C+Nazar&rft.au=Song%2C+Guohui&rft.au=Sun%2C+Qiyu&rft.date=2025-12-01&rft.issn=0723-0869&rft.volume=43&rft.issue=6&rft.spage=125740&rft_id=info:doi/10.1016%2Fj.exmath.2025.125740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_exmath_2025_125740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-0869&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-0869&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-0869&client=summon