The Evolution of Cloud through SJF-ML Hybrid Scheduling
Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four ML algorithm categories, with cloud evolution through ML intelligence as the primary objective. The four categories include: SJF-CA, SJ...
Uloženo v:
| Vydáno v: | Journal of Information and Organizational Sciences Ročník 49; číslo 2; s. 193 - 211 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article Paper |
| Jazyk: | angličtina |
| Vydáno: |
Varazdin
Sveuciliste u Zagrebu, Fakultet Organizacije i Informatike
01.01.2025
Sveučilište u Zagrebu Fakultet organizacije i informatike University of Zagreb, Faculty of organization and informatics |
| Témata: | |
| ISSN: | 1846-3312, 1846-9418 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four ML algorithm categories, with cloud evolution through ML intelligence as the primary objective. The four categories include: SJF-CA, SJF-ELA, SJF-PM, and SJF-RA. The developed SJF-ML algorithms by the author perform pattern recognition of the tasks that are to be computed, to improve decision-making during task computations in the cloud. These sixteen SJF-ML algorithms include: SJF-ADAB, SJF-BAY, SJF-DT, SJF-KNN, SJF-LAS, SJF-LDA, SJF-LGB, SJF-LN, SJF-MLP, SJF-NAV, SJF-PLY, SJF-RDG, SJF-RF, SJF-RBST, SJF-SVM, and SJF-XGB. Performance Metrics: Cost, Time, Energy, and LB are utilized to compare the developed algorithms with baseline SJF, along with comparing them within their respective SJF-ML categories. Dataset: The real-time Google Big Data Task (BDT) dataset, comprising tasks ranging from one hundred to one thousand across nineteen files, was computed using the SJF-ML and SJF algorithms. Experiment: Open-source CloudSim simulator with VM counts of 20, 40, 60, 80, and 100 were utilized to compute the BDTs, outputting results across the considered metrics. Results: The algorithms SJF-XGB and SJF-LN provided the best results, with SJF-DT, SJF-LAS, and SJF-LDA providing poor results. Findings: Hybridization of the cloud's scheduling algorithms with ML provides improved intelligence and performance, resulting in the evolution of the cloud. |
|---|---|
| AbstractList | Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four ML algorithm categories, with cloud evolution through ML intelligence as the primary objective. The four categories include: SJF-CA, SJF-ELA, SJF-PM, and SJF-RA. The developed SJF-ML algorithms by the author perform pattern recognition of the tasks that are to be computed, to improve decision-making during task computations in the cloud. These sixteen SJF-ML algorithms include: SJF-ADAB, SJF-BAY, SJF-DT, SJF-KNN, SJF-LAS, SJF-LDA, SJF-LGB, SJF-LN, SJF-MLP, SJF-NAV, SJF-PLY, SJF-RDG, SJF-RF, SJF-RBST, SJF-SVM, and SJF-XGB. Performance Metrics: Cost, Time, Energy, and LB are utilized to compare the developed algorithms with baseline SJF, along with comparing them within their respective SJF-ML categories. Dataset: The real-time Google Big Data Task (BDT) dataset, comprising tasks ranging from one hundred to one thousand across nineteen files, was computed using the SJF-ML and SJF algorithms. Experiment: Open-source CloudSim simulator with VM counts of 20, 40, 60, 80, and 100 were utilized to compute the BDTs, outputting results across the considered metrics. Results: The algorithms SJF-XGB and SJF-LN provided the best results, with SJF-DT, SJF-LAS, and SJF-LDA providing poor results. Findings: Hybridization of the cloud's scheduling algorithms with ML provides improved intelligence and performance, resulting in the evolution of the cloud. |
| Author | Vijay Lahande, Prathamesh |
| Author_xml | – sequence: 1 givenname: Prathamesh surname: Vijay Lahande fullname: Vijay Lahande, Prathamesh |
| BookMark | eNpVkV1LwzAUhoMoOOfu_AEFb-1McpImvZShTpl44bwO-Vw7a6PpKuzfW1cRPDfn8PLwwOE9Q8dtbD1CFwTPgQAj19s6dnNWzukcjtCESFbkJSPy-PcGIPQUzbpui4cBwjijEyTWlc9uv2LT7-rYZjFkiyb2LttVKfabKnt5vMufVtlyb1Ltshdbedc3dbs5RydBN52f_e4per27XS-W-er5_mFxs8otxQJy7gwB6bHGRRCOS15gS0Fi74VzhsoAjhaOApHCEc_AFoaHMnCsAxRMcpiih9Hrot6qj1S_67RXUdfqEMS0UTrtatt4pVlwxBTGc8mYcMxQw5ww0tIyCGvN4MpHV5WsfvsnG5MuWT-cCoALwgb-cuQ_UvzsfbdT29indnhXAS0w4FKWdKCuRsqm2HXJhz8xwerQjPppRrFS0cH8DY3YgTg |
| ContentType | Journal Article Paper |
| Copyright | 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This is sourced from HRČAK - Portal of scientific journals of Croatia. |
| Copyright_xml | – notice: 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This is sourced from HRČAK - Portal of scientific journals of Croatia. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D VP8 DOA |
| DOI | 10.31341/jios.49.2.3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Portal of Croatian Scientific and Professional Journals – HRČAK Directory of Open Access Journals |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| EISSN | 1846-9418 |
| EndPage | 211 |
| ExternalDocumentID | oai_doaj_org_article_a4fd1b6be58447d4b2b4d7b8c29f7ccb oai_hrcak_srce_hr_335714 10_31341_jios_49_2_3 |
| GroupedDBID | 29K 2WC 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION D-I GROUPED_DOAJ KQ8 REL TR2 VP8 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2073-5db138e0a06f7d58560c2380ee7ddb28f3d26d23187d1e43c6b5f9f50af364853 |
| IEDL.DBID | DOA |
| ISSN | 1846-3312 |
| IngestDate | Fri Oct 03 12:50:37 EDT 2025 Tue Sep 23 04:10:26 EDT 2025 Thu Oct 16 00:38:57 EDT 2025 Sat Nov 29 07:26:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by-nc-nd: openAccess |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2073-5db138e0a06f7d58560c2380ee7ddb28f3d26d23187d1e43c6b5f9f50af364853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 335714 |
| OpenAccessLink | https://doaj.org/article/a4fd1b6be58447d4b2b4d7b8c29f7ccb |
| PQID | 3260309892 |
| PQPubID | 2035624 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a4fd1b6be58447d4b2b4d7b8c29f7ccb hrcak_primary_oai_hrcak_srce_hr_335714 proquest_journals_3260309892 crossref_primary_10_31341_jios_49_2_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 20250101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Varazdin |
| PublicationPlace_xml | – name: Varazdin |
| PublicationTitle | Journal of Information and Organizational Sciences |
| PublicationYear | 2025 |
| Publisher | Sveuciliste u Zagrebu, Fakultet Organizacije i Informatike Sveučilište u Zagrebu Fakultet organizacije i informatike University of Zagreb, Faculty of organization and informatics |
| Publisher_xml | – name: Sveuciliste u Zagrebu, Fakultet Organizacije i Informatike – name: Sveučilište u Zagrebu Fakultet organizacije i informatike – name: University of Zagreb, Faculty of organization and informatics |
| SSID | ssj0000314542 ssib044744616 ssib008489805 |
| Score | 2.2948124 |
| Snippet | Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four... |
| SourceID | doaj hrcak proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 193 |
| SubjectTerms | Algorithms Categories Cloud-Computing Computation Datasets Evolution Hybrid-Algorithm Intelligence Machine learning Pattern recognition Performance measurement Real time Scheduling SJF |
| Title | The Evolution of Cloud through SJF-ML Hybrid Scheduling |
| URI | https://www.proquest.com/docview/3260309892 https://hrcak.srce.hr/335714 https://doaj.org/article/a4fd1b6be58447d4b2b4d7b8c29f7ccb |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1846-9418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000314542 issn: 1846-3312 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1846-9418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044744616 issn: 1846-3312 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA4iFjbiE88XKdRuz2yS3SSlioeIiqCCXcgTX9zJ3Sn4751koygWNnYh-yD7TTLzTTYzg9Au-DZAwy2vgiGh4kqyykhHoOVkbBypTciBwufi8lLe3amrb6W-0pmwLj1wB9yB4dHXtrUBLCUXnltquRdWOqqicM4m7UuE-uZMZR3Mat5w2p10Zylp2cHjw2jS56pP--yHDcqp-oGa3o-defqlkbOZGSyihcIP8WE3riU0E4bLaLtEF-B9XMKHEpy4rMsVJEDY-OStzCI8ivj4efTqcSnCg6_PBtXFOT59T-FZ8Ng92JcUhr6KbgcnN8enVamIUDn4SFY13tZMBmJIG4UHpt8SB2CTEIT3lsrIPG09UDYpfB04c61toooNMZG1HCzzGpodjoZhHWEZ4IIK3vBguVWtSYntDZA38FFiHW0P7X1ipF-6xBcaHIaMpU5Yaq401ayHjhKAX_ekdNW5A4SoixD1X0Lsof0M_4-3dD2TsQvQ1Iw1ouY9tPUpH10W20QDA00_iqSiG_8xmE00T1OR37zPsoVmp-PXsI3m3Nv0YTLeyfPsA_Ah2Yw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Evolution+of+Cloud+through+SJF-ML+Hybrid+Scheduling&rft.jtitle=Journal+of+information+and+organizational+sciences&rft.au=Vijay+Lahande%2C+Prathamesh&rft.date=2025-01-01&rft.pub=Sveuciliste+u+Zagrebu%2C+Fakultet+Organizacije+i+Informatike&rft.issn=1846-3312&rft.eissn=1846-9418&rft.volume=49&rft.issue=2&rft.spage=193&rft_id=info:doi/10.31341%2Fjios.49.2.3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1846-3312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1846-3312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1846-3312&client=summon |