The Evolution of Cloud through SJF-ML Hybrid Scheduling

Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four ML algorithm categories, with cloud evolution through ML intelligence as the primary objective. The four categories include: SJF-CA, SJ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Information and Organizational Sciences Ročník 49; číslo 2; s. 193 - 211
Hlavní autor: Vijay Lahande, Prathamesh
Médium: Journal Article Paper
Jazyk:angličtina
Vydáno: Varazdin Sveuciliste u Zagrebu, Fakultet Organizacije i Informatike 01.01.2025
Sveučilište u Zagrebu Fakultet organizacije i informatike
University of Zagreb, Faculty of organization and informatics
Témata:
ISSN:1846-3312, 1846-9418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four ML algorithm categories, with cloud evolution through ML intelligence as the primary objective. The four categories include: SJF-CA, SJF-ELA, SJF-PM, and SJF-RA. The developed SJF-ML algorithms by the author perform pattern recognition of the tasks that are to be computed, to improve decision-making during task computations in the cloud. These sixteen SJF-ML algorithms include: SJF-ADAB, SJF-BAY, SJF-DT, SJF-KNN, SJF-LAS, SJF-LDA, SJF-LGB, SJF-LN, SJF-MLP, SJF-NAV, SJF-PLY, SJF-RDG, SJF-RF, SJF-RBST, SJF-SVM, and SJF-XGB. Performance Metrics: Cost, Time, Energy, and LB are utilized to compare the developed algorithms with baseline SJF, along with comparing them within their respective SJF-ML categories. Dataset: The real-time Google Big Data Task (BDT) dataset, comprising tasks ranging from one hundred to one thousand across nineteen files, was computed using the SJF-ML and SJF algorithms. Experiment: Open-source CloudSim simulator with VM counts of 20, 40, 60, 80, and 100 were utilized to compute the BDTs, outputting results across the considered metrics. Results: The algorithms SJF-XGB and SJF-LN provided the best results, with SJF-DT, SJF-LAS, and SJF-LDA providing poor results. Findings: Hybridization of the cloud's scheduling algorithms with ML provides improved intelligence and performance, resulting in the evolution of the cloud.
AbstractList Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four ML algorithm categories, with cloud evolution through ML intelligence as the primary objective. The four categories include: SJF-CA, SJF-ELA, SJF-PM, and SJF-RA. The developed SJF-ML algorithms by the author perform pattern recognition of the tasks that are to be computed, to improve decision-making during task computations in the cloud. These sixteen SJF-ML algorithms include: SJF-ADAB, SJF-BAY, SJF-DT, SJF-KNN, SJF-LAS, SJF-LDA, SJF-LGB, SJF-LN, SJF-MLP, SJF-NAV, SJF-PLY, SJF-RDG, SJF-RF, SJF-RBST, SJF-SVM, and SJF-XGB. Performance Metrics: Cost, Time, Energy, and LB are utilized to compare the developed algorithms with baseline SJF, along with comparing them within their respective SJF-ML categories. Dataset: The real-time Google Big Data Task (BDT) dataset, comprising tasks ranging from one hundred to one thousand across nineteen files, was computed using the SJF-ML and SJF algorithms. Experiment: Open-source CloudSim simulator with VM counts of 20, 40, 60, 80, and 100 were utilized to compute the BDTs, outputting results across the considered metrics. Results: The algorithms SJF-XGB and SJF-LN provided the best results, with SJF-DT, SJF-LAS, and SJF-LDA providing poor results. Findings: Hybridization of the cloud's scheduling algorithms with ML provides improved intelligence and performance, resulting in the evolution of the cloud.
Author Vijay Lahande, Prathamesh
Author_xml – sequence: 1
  givenname: Prathamesh
  surname: Vijay Lahande
  fullname: Vijay Lahande, Prathamesh
BookMark eNpVkV1LwzAUhoMoOOfu_AEFb-1McpImvZShTpl44bwO-Vw7a6PpKuzfW1cRPDfn8PLwwOE9Q8dtbD1CFwTPgQAj19s6dnNWzukcjtCESFbkJSPy-PcGIPQUzbpui4cBwjijEyTWlc9uv2LT7-rYZjFkiyb2LttVKfabKnt5vMufVtlyb1Ltshdbedc3dbs5RydBN52f_e4per27XS-W-er5_mFxs8otxQJy7gwB6bHGRRCOS15gS0Fi74VzhsoAjhaOApHCEc_AFoaHMnCsAxRMcpiih9Hrot6qj1S_67RXUdfqEMS0UTrtatt4pVlwxBTGc8mYcMxQw5ww0tIyCGvN4MpHV5WsfvsnG5MuWT-cCoALwgb-cuQ_UvzsfbdT29indnhXAS0w4FKWdKCuRsqm2HXJhz8xwerQjPppRrFS0cH8DY3YgTg
ContentType Journal Article
Paper
Copyright 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This is sourced from HRČAK - Portal of scientific journals of Croatia.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This is sourced from HRČAK - Portal of scientific journals of Croatia.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
VP8
DOA
DOI 10.31341/jios.49.2.3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Portal of Croatian Scientific and Professional Journals – HRČAK
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1846-9418
EndPage 211
ExternalDocumentID oai_doaj_org_article_a4fd1b6be58447d4b2b4d7b8c29f7ccb
oai_hrcak_srce_hr_335714
10_31341_jios_49_2_3
GroupedDBID 29K
2WC
5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
D-I
GROUPED_DOAJ
KQ8
REL
TR2
VP8
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2073-5db138e0a06f7d58560c2380ee7ddb28f3d26d23187d1e43c6b5f9f50af364853
IEDL.DBID DOA
ISSN 1846-3312
IngestDate Fri Oct 03 12:50:37 EDT 2025
Tue Sep 23 04:10:26 EDT 2025
Thu Oct 16 00:38:57 EDT 2025
Sat Nov 29 07:26:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by-nc-nd: openAccess
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2073-5db138e0a06f7d58560c2380ee7ddb28f3d26d23187d1e43c6b5f9f50af364853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
335714
OpenAccessLink https://doaj.org/article/a4fd1b6be58447d4b2b4d7b8c29f7ccb
PQID 3260309892
PQPubID 2035624
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_a4fd1b6be58447d4b2b4d7b8c29f7ccb
hrcak_primary_oai_hrcak_srce_hr_335714
proquest_journals_3260309892
crossref_primary_10_31341_jios_49_2_3
PublicationCentury 2000
PublicationDate 20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 20250101
  day: 01
PublicationDecade 2020
PublicationPlace Varazdin
PublicationPlace_xml – name: Varazdin
PublicationTitle Journal of Information and Organizational Sciences
PublicationYear 2025
Publisher Sveuciliste u Zagrebu, Fakultet Organizacije i Informatike
Sveučilište u Zagrebu Fakultet organizacije i informatike
University of Zagreb, Faculty of organization and informatics
Publisher_xml – name: Sveuciliste u Zagrebu, Fakultet Organizacije i Informatike
– name: Sveučilište u Zagrebu Fakultet organizacije i informatike
– name: University of Zagreb, Faculty of organization and informatics
SSID ssj0000314542
ssib044744616
ssib008489805
Score 2.294909
Snippet Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) hybrid algorithms, combining the cloud's SJF scheduling algorithm with four...
SourceID doaj
hrcak
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 193
SubjectTerms Algorithms
Categories
Cloud-Computing
Computation
Datasets
Evolution
Hybrid-Algorithm
Intelligence
Machine learning
Pattern recognition
Performance measurement
Real time
Scheduling
SJF
Title The Evolution of Cloud through SJF-ML Hybrid Scheduling
URI https://www.proquest.com/docview/3260309892
https://hrcak.srce.hr/335714
https://doaj.org/article/a4fd1b6be58447d4b2b4d7b8c29f7ccb
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1846-9418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314542
  issn: 1846-3312
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1846-9418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044744616
  issn: 1846-3312
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yePAiPrG-yEG9dU2TtEmOKruIqAgqeAt54outdFfBf2-SRlE8ePFWQlvSb5KZL2nmGwD2jGZ1YPG6tJWjJa2FKlXtWRml2pAP_FjrZOlzdnnJ7-7E1bdSX_FMWC8P3AN3qKi3lW60C5GSMks11tQyzQ0Wnhmjo_dFTHxbTCUfTCpaU9yfdCdRtOzw8aGdDqkY4iH5EYOSVH-gpvedUU-_PHIKM-MlsJj5ITzq-7UM5txkBezk7AJ4AHP6UIQT5nm5ClgwNhy95VEEWw9PnttXC3MRHnh9Ni4vzuHpe0zPCo_dh_gS09DXwO14dHNyWuaKCKUJH0nK2uqKcIcUajyzgek3yISYi5xj1mrMPbG4sYGycRaxJ6bRtRe-RsqThobIvA4Gk3biNgCsjDEOecI1sUlzXVjOFbIV4so0VhVg_xMj-dILX8iwYEhYyoilpEJiSQpwHAH8uifKVaeGYESZjSj_MmIBDhL8P97St0w748KlJKRmFS3A9qd9ZJ5sUxkYaPxRxAXe_I_ObIEFHIv8pn2WbTCYda9uB8ybt9nDtNtN4-wDZjDZQw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Evolution+of+Cloud+through+SJF-ML+Hybrid+Scheduling&rft.jtitle=Journal+of+information+and+organizational+sciences&rft.au=Vijay+Lahande%2C+Prathamesh&rft.date=2025-01-01&rft.issn=1846-3312&rft.eissn=1846-9418&rft.volume=49&rft.issue=2&rft.spage=193&rft.epage=211&rft_id=info:doi/10.31341%2Fjios.49.2.3&rft.externalDBID=n%2Fa&rft.externalDocID=10_31341_jios_49_2_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1846-3312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1846-3312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1846-3312&client=summon