A note on fast deterministic algorithms for non-monotone submodular maximization under a knapsack constraint
We present a refined analysis of a variant of the algorithm in the literature for solving the knapsack-constrained submodular maximization problem. By deriving a strong approximation bound for this variant, we reduce the size of the sets requiring enumeration, from two to one, to ensure the final al...
Gespeichert in:
| Veröffentlicht in: | Operations research letters Jg. 61; S. 107295 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.07.2025
|
| Schlagworte: | |
| ISSN: | 0167-6377 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present a refined analysis of a variant of the algorithm in the literature for solving the knapsack-constrained submodular maximization problem. By deriving a strong approximation bound for this variant, we reduce the size of the sets requiring enumeration, from two to one, to ensure the final algorithm achieves 1/4-approximation. As a result, we obtain the fastest deterministic algorithm so far which achieves an approximation ratio of 1/4 for the problem. |
|---|---|
| ISSN: | 0167-6377 |
| DOI: | 10.1016/j.orl.2025.107295 |