A note on fast deterministic algorithms for non-monotone submodular maximization under a knapsack constraint
We present a refined analysis of a variant of the algorithm in the literature for solving the knapsack-constrained submodular maximization problem. By deriving a strong approximation bound for this variant, we reduce the size of the sets requiring enumeration, from two to one, to ensure the final al...
Uloženo v:
| Vydáno v: | Operations research letters Ročník 61; s. 107295 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2025
|
| Témata: | |
| ISSN: | 0167-6377 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a refined analysis of a variant of the algorithm in the literature for solving the knapsack-constrained submodular maximization problem. By deriving a strong approximation bound for this variant, we reduce the size of the sets requiring enumeration, from two to one, to ensure the final algorithm achieves 1/4-approximation. As a result, we obtain the fastest deterministic algorithm so far which achieves an approximation ratio of 1/4 for the problem. |
|---|---|
| ISSN: | 0167-6377 |
| DOI: | 10.1016/j.orl.2025.107295 |