A note on fast deterministic algorithms for non-monotone submodular maximization under a knapsack constraint

We present a refined analysis of a variant of the algorithm in the literature for solving the knapsack-constrained submodular maximization problem. By deriving a strong approximation bound for this variant, we reduce the size of the sets requiring enumeration, from two to one, to ensure the final al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 61; s. 107295
Hlavní autor: Lu, Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2025
Témata:
ISSN:0167-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a refined analysis of a variant of the algorithm in the literature for solving the knapsack-constrained submodular maximization problem. By deriving a strong approximation bound for this variant, we reduce the size of the sets requiring enumeration, from two to one, to ensure the final algorithm achieves 1/4-approximation. As a result, we obtain the fastest deterministic algorithm so far which achieves an approximation ratio of 1/4 for the problem.
ISSN:0167-6377
DOI:10.1016/j.orl.2025.107295