Photo-induced hydrophilicity at the ZnO(112̄0) surface: an evolutionary algorithm-aided density functional theory study

Evolutionary algorithm-aided density functional theory calculations were utilized to determine the stable adsorption structures of H2O at ZnO(112̄0) extensively under different coverages. By decomposing the adsorption energetics, we illustrate that H2O dissociation to a large extent is actually hamp...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP Vol. 23; no. 35; p. 19790
Main Authors: Bao, Shen-Yuan, Li, Dong-Zhi, Gong, Xue-Qing
Format: Journal Article
Language:English
Published: 15.09.2021
ISSN:1463-9084, 1463-9084
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evolutionary algorithm-aided density functional theory calculations were utilized to determine the stable adsorption structures of H2O at ZnO(112̄0) extensively under different coverages. By decomposing the adsorption energetics, we illustrate that H2O dissociation to a large extent is actually hampered by the barrier for induced distortion of the ZnO surface, and once the surface becomes less difficult to be distorted it will exhibit higher hydrophilicity or even superhydrophilicity. Specifically, photo-stimulation modelling suggests that the surface Zn-O bonds can be weakened by photo-excitation, and the layer of fully dissociated H2O can be then facilitated to form. Accordingly, a novel mechanism for photo-induced superhydrophilicity is proposed.Evolutionary algorithm-aided density functional theory calculations were utilized to determine the stable adsorption structures of H2O at ZnO(112̄0) extensively under different coverages. By decomposing the adsorption energetics, we illustrate that H2O dissociation to a large extent is actually hampered by the barrier for induced distortion of the ZnO surface, and once the surface becomes less difficult to be distorted it will exhibit higher hydrophilicity or even superhydrophilicity. Specifically, photo-stimulation modelling suggests that the surface Zn-O bonds can be weakened by photo-excitation, and the layer of fully dissociated H2O can be then facilitated to form. Accordingly, a novel mechanism for photo-induced superhydrophilicity is proposed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9084
1463-9084
DOI:10.1039/d1cp02542b