Majorization–minimization generalized Krylov subspace methods for ℓp–ℓq optimization applied to image restoration

A new majorization–minimization framework for ℓ p – ℓ q image restoration is presented. The solution is sought in a generalized Krylov subspace that is build up during the solution process. Proof of convergence to a stationary point of the minimized ℓ p – ℓ q functional is provided for both convex a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BIT Numerical Mathematics Ročník 57; číslo 2; s. 351 - 378
Hlavní autoři: Huang, G., Lanza, A., Morigi, S., Reichel, L., Sgallari, F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.06.2017
Témata:
ISSN:0006-3835, 1572-9125
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new majorization–minimization framework for ℓ p – ℓ q image restoration is presented. The solution is sought in a generalized Krylov subspace that is build up during the solution process. Proof of convergence to a stationary point of the minimized ℓ p – ℓ q functional is provided for both convex and nonconvex problems. Computed examples illustrate that high-quality restorations can be determined with a modest number of iterations and that the storage requirement of the method is not very large. A comparison with related methods shows the competitiveness of the method proposed.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-016-0643-8