Comparisons of Facial Recognition Algorithms Through a Case Study Application

Abstract— Computer visions and their applications have become important in contemporary life. Hence, researches on facial and object recognition have become increasingly important both from academicians and practitioners. Smart gadgets such as smartphones are nowadays capable of high processing powe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of interactive mobile technologies Ročník 14; číslo 14; s. 121
Hlavní autoři: Dirin, Amir, Delbiaggio, Nicolas, Kauttonen, Janne
Médium: Journal Article
Jazyk:angličtina
Vydáno: 28.08.2020
ISSN:1865-7923, 1865-7923
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Abstract— Computer visions and their applications have become important in contemporary life. Hence, researches on facial and object recognition have become increasingly important both from academicians and practitioners. Smart gadgets such as smartphones are nowadays capable of high processing power, memory capacity, along with high resolutions camera. Furthermore, the connectivity bandwidth and the speed of the interaction have significantly impacted the popularity of mobile object recognition applications. These developments in addition to computer vision’s algorithms advancement have transferred object’s recognitions from desktop environments to the mobile world. The aim of this paper to reveal the efficiency and accuracy of the existing open-source facial recognition algorithms in real-life settings. We use the following popular open-source algorithms for efficiency evaluations: Eigenfaces, Fisherfaces, Local Binary Pattern Histogram, the deep convolutional neural network algorithm, and OpenFace. The evaluations of the test cases indicate that among the compared facial recognition algorithms the OpenFace algorithm has the highest accuracy to identify faces. The findings of this study help the practitioner on their decision of the algorithm selections and the academician on how to improve the accuracy of the current algorithms even further.
ISSN:1865-7923
1865-7923
DOI:10.3991/ijim.v14i14.14997