Criteria of the k-singularity and division of 1-singular systems
The concept of the k -singularity of systems of points in ℝ m space with l 1 metrics is studied. A system of q points is k -singular if and only if the dimensionality of the linear space of polynomials with powers no higher than the k of the columns of the matrix of pair-wise distances (element-wise...
Uložené v:
| Vydané v: | Moscow University computational mathematics and cybernetics Ročník 34; číslo 4; s. 164 - 171 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
Allerton Press, Inc
01.12.2010
|
| Predmet: | |
| ISSN: | 0278-6419, 1934-8428 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The concept of the
k
-singularity of systems of points in ℝ
m
space with
l
1
metrics is studied. A system of
q
points is
k
-singular if and only if the dimensionality of the linear space of polynomials with powers no higher than the
k
of the columns of the matrix of pair-wise distances (element-wise multiplication) is strictly less than
q
. An algebraic criterion of
k
-singularity is obtained. The problem of dividing a system of points into subsystems that are not 1-singular is considered. An estimate of the minimum number of such subsystems is obtained. |
|---|---|
| ISSN: | 0278-6419 1934-8428 |
| DOI: | 10.3103/S0278641910040035 |