Iterative Linear Quadratic Optimization for Nonlinear Control: Differentiable Programming Algorithmic Templates

Iterative optimization algorithms depend on access to information about the objective function. In a differentiable programming framework, this information, such as gradients, can be automatically derived from the computational graph. We explore how nonlinear control algorithms, often employing line...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Open Journal of Mathematical Optimization Ročník 5; s. 1 - 63
Hlavní autoři: Roulet, Vincent, Srinivasa, Siddhartha, Fazel, Maryam, Harchaoui, Zaid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Université de Montpellier 04.11.2024
Témata:
ISSN:2777-5860, 2777-5860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Iterative optimization algorithms depend on access to information about the objective function. In a differentiable programming framework, this information, such as gradients, can be automatically derived from the computational graph. We explore how nonlinear control algorithms, often employing linear and/or quadratic approximations, can be effectively cast within this framework. Our approach illuminates shared components and differences between gradient descent, Gauss–Newton, Newton, and differential dynamic programming methods in the context of discrete time nonlinear control. Furthermore, we present line-search strategies and regularized variants of these algorithms, along with a comprehensive analysis of their computational complexities. We study the performance of the aforementioned algorithms on various nonlinear control benchmarks, including autonomous car racing simulations using a simplified car model. All implementations are publicly available in a package coded in a differentiable programming language.
ISSN:2777-5860
2777-5860
DOI:10.5802/ojmo.32