Vector control based on splitting variable modulating waveform PWM overmodulation strategy
A novel pulse width modulation (PWM) overmodulation technique based on splitting variable modulating waveform is proposed in this paper. It aims to solve the disadvantages of complex and difficult application of the existing space vector pulse width modulation (SVPWM) overmodulation algorithm and of...
Saved in:
| Published in: | Electrical engineering Vol. 104; no. 5; pp. 3477 - 3485 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0948-7921, 1432-0487 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A novel pulse width modulation (PWM) overmodulation technique based on splitting variable modulating waveform is proposed in this paper. It aims to solve the disadvantages of complex and difficult application of the existing space vector pulse width modulation (SVPWM) overmodulation algorithm and offer a simpler implementation for overmodulation than classic SVPWM techniques. When the modulation index
M
is within the linear modulation range [0, 1], the modulating waveform is a sinusoidal wave. With the
M
is increasing within [1, 4/
π
], the modulating waveform area expands continuously until it becomes a square wave. The PWM output voltage of the vector control system is implemented by using triangle carrier-based sampling pulse width modulation. Furthermore, digital low-pass filters are used in the
d
-axis current and
q
-axis voltage of the system, in order to eliminate the negative influence of the PWM low-order harmonics on the proportion integration control in the overmodulation range. The control software is modified and improved to overcome the shortage of slow response speed. The basic logic of the software is to close the filtering process once the load or speed instructions changes and turn on the filtering process when the transient process ends. The contradiction between the filtering and dynamic responses is thus eliminated by using the basic logic. Compared with the SVPWM working in linear region, the constant torque speed regulating range of the AC motor has an improvement of 10% based on the proposed technique. Simulated and experimental results indicate the good effectiveness and feasibility of this technique. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0948-7921 1432-0487 |
| DOI: | 10.1007/s00202-022-01561-0 |