Performance Characterization of Python Runtimes for Multi-device Task Parallel Programming

Modern Python programs in high-performance computing call into compiled libraries and kernels for performance-critical tasks. However, effectively parallelizing these finer-grained, and often dynamic, kernels across modern heterogeneous platforms remains a challenge. This paper designs and optimizes...

Full description

Saved in:
Bibliographic Details
Published in:International journal of parallel programming Vol. 53; no. 2; p. 16
Main Authors: Ruys, William, Lee, Hochan, You, Bozhi, Talati, Shreya, Park, Jaeyoung, Almgren-Bell, James, Yan, Yineng, Fernando, Milinda, Erez, Mattan, Gligoric, Milos, Burtscher, Martin, Rossbach, Christopher J., Pingali, Keshav, Biros, George
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2025
Springer Nature B.V
Subjects:
ISSN:0885-7458, 1573-7640
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Modern Python programs in high-performance computing call into compiled libraries and kernels for performance-critical tasks. However, effectively parallelizing these finer-grained, and often dynamic, kernels across modern heterogeneous platforms remains a challenge. This paper designs and optimizes a multi-threaded runtime for Python tasks on single-node multi-GPU systems, including tasks that use resources across multiple devices. We perform an experimental study which examines the impact of Python’s Global Interpreter Lock (GIL) on runtime performance and the potential gains under a GIL-less PEP703 future. This work explores tasks with variants for different different device sets, introducing new programming abstractions and runtime mechanisms to simplify their management and enhance portability. Our experimental analysis, using tasks graphs from synthetic and real applications, shows at least a 3 × (and up to 6 × ) performance improvement over its predecessor in scenarios with high GIL contention. Our implementation of multi-device tasks achieves 8 × less overhead per task relative to a multi-process alternative using Ray.
AbstractList Modern Python programs in high-performance computing call into compiled libraries and kernels for performance-critical tasks. However, effectively parallelizing these finer-grained, and often dynamic, kernels across modern heterogeneous platforms remains a challenge. This paper designs and optimizes a multi-threaded runtime for Python tasks on single-node multi-GPU systems, including tasks that use resources across multiple devices. We perform an experimental study which examines the impact of Python’s Global Interpreter Lock (GIL) on runtime performance and the potential gains under a GIL-less PEP703 future. This work explores tasks with variants for different different device sets, introducing new programming abstractions and runtime mechanisms to simplify their management and enhance portability. Our experimental analysis, using tasks graphs from synthetic and real applications, shows at least a 3× (and up to 6×) performance improvement over its predecessor in scenarios with high GIL contention. Our implementation of multi-device tasks achieves 8× less overhead per task relative to a multi-process alternative using Ray.
Modern Python programs in high-performance computing call into compiled libraries and kernels for performance-critical tasks. However, effectively parallelizing these finer-grained, and often dynamic, kernels across modern heterogeneous platforms remains a challenge. This paper designs and optimizes a multi-threaded runtime for Python tasks on single-node multi-GPU systems, including tasks that use resources across multiple devices. We perform an experimental study which examines the impact of Python’s Global Interpreter Lock (GIL) on runtime performance and the potential gains under a GIL-less PEP703 future. This work explores tasks with variants for different different device sets, introducing new programming abstractions and runtime mechanisms to simplify their management and enhance portability. Our experimental analysis, using tasks graphs from synthetic and real applications, shows at least a 3 × (and up to 6 × ) performance improvement over its predecessor in scenarios with high GIL contention. Our implementation of multi-device tasks achieves 8 × less overhead per task relative to a multi-process alternative using Ray.
ArticleNumber 16
Author Gligoric, Milos
Rossbach, Christopher J.
Ruys, William
Yan, Yineng
Fernando, Milinda
Erez, Mattan
Talati, Shreya
Park, Jaeyoung
Lee, Hochan
You, Bozhi
Biros, George
Pingali, Keshav
Almgren-Bell, James
Burtscher, Martin
Author_xml – sequence: 1
  givenname: William
  surname: Ruys
  fullname: Ruys, William
  email: will@oden.utexas.edu
  organization: The University of Texas at Austin
– sequence: 2
  givenname: Hochan
  surname: Lee
  fullname: Lee, Hochan
  organization: The University of Texas at Austin
– sequence: 3
  givenname: Bozhi
  surname: You
  fullname: You, Bozhi
  organization: The University of Texas at Austin
– sequence: 4
  givenname: Shreya
  surname: Talati
  fullname: Talati, Shreya
  organization: The University of Texas at Austin
– sequence: 5
  givenname: Jaeyoung
  surname: Park
  fullname: Park, Jaeyoung
  organization: The University of Texas at Austin
– sequence: 6
  givenname: James
  surname: Almgren-Bell
  fullname: Almgren-Bell, James
  organization: The University of Texas at Austin
– sequence: 7
  givenname: Yineng
  surname: Yan
  fullname: Yan, Yineng
  organization: The University of Texas at Austin
– sequence: 8
  givenname: Milinda
  surname: Fernando
  fullname: Fernando, Milinda
  organization: The University of Texas at Austin
– sequence: 9
  givenname: Mattan
  surname: Erez
  fullname: Erez, Mattan
  organization: The University of Texas at Austin
– sequence: 10
  givenname: Milos
  surname: Gligoric
  fullname: Gligoric, Milos
  organization: The University of Texas at Austin
– sequence: 11
  givenname: Martin
  surname: Burtscher
  fullname: Burtscher, Martin
  organization: Texas State University
– sequence: 12
  givenname: Christopher J.
  surname: Rossbach
  fullname: Rossbach, Christopher J.
  organization: The University of Texas at Austin
– sequence: 13
  givenname: Keshav
  surname: Pingali
  fullname: Pingali, Keshav
  organization: The University of Texas at Austin
– sequence: 14
  givenname: George
  surname: Biros
  fullname: Biros, George
  organization: The University of Texas at Austin
BookMark eNp9kN9LwzAQx4NMcJv-Az4VfI4mTdJkjzL8BROLzBdfQtpets42nUkrzL_eaAXfhIO7g8_nDr4zNHGdA4TOKbmkhMirQInMMkxSgeOqFKZHaEqFZFhmnEzQlCglsORCnaBZCDtCyCJiU_Sag7edb40rIVlujTdlD77-NH3duaSzSX7ot3F6HlxftxCSCCePQ9PXuIKPOkprE96SPIpNA02S-27jTdvWbnOKjq1pApz99jl6ub1ZL-_x6unuYXm9wmVKSI8rwSspIVWZNYKJQgJXmSIZAAPDWVFYWxVVuWC0NJZaZkFwICKWLJThhs3RxXh377v3AUKvd93gXXypGZWKM56RRaTSkSp9F4IHq_e-bo0_aEr0d4Z6zFDHDPVPhppGiY1SiLDbgP87_Y_1BYrHeAI
Cites_doi 10.1109/SC41405.2020.00066
10.1002/cpe.1631
10.1109/SC41404.2022.00056
10.1145/3332186.3332231
10.1109/SBAC-PAD55451.2022.00025
10.1038/s41592-019-0686-2
10.1016/j.parco.2009.12.005
10.1145/3311790.3396656
10.1109/MCSE.2011.37
10.1109/CLUSTERWorkshops61457.2023.00028
10.1109/ICPADS56603.2022.00117
10.1145/3447818.3460376
10.1145/3307681.3325401
10.1177/1094342015594678
10.1177/1094342006064503
10.1145/2818311
10.1109/CCGrid49817.2020.00-66
10.1145/3295500.3356175
10.1016/j.jpdc.2017.06.009
10.1109/MCSE.2013.98
10.1109/IPDPS53621.2022.00073
10.1007/BFb0053987
10.1109/PAW-ATM49560.2019.00011
10.1007/978-0-387-09766-4_54
10.1109/SC.2012.71
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10766-025-00788-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
ExternalDocumentID 10_1007_s10766_025_00788_1
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969; DE-NA0003969
GroupedDBID -Y2
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
E.L
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
MS~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZY4
~8M
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AGQPQ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c200t-d54d77e286fa535b7e486806ee3ea43bbffdbdc931caf1f3fe54e05e057b8a4a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001449019300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7458
IngestDate Wed Nov 05 07:03:30 EST 2025
Sat Nov 29 08:06:45 EST 2025
Sat Apr 05 01:12:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords HPC in Python
Task parallel programming
GPU tasking systems
GPU programming in Python
Global Interpreter Lock
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-d54d77e286fa535b7e486806ee3ea43bbffdbdc931caf1f3fe54e05e057b8a4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3178434609
PQPubID 48389
ParticipantIDs proquest_journals_3178434609
crossref_primary_10_1007_s10766_025_00788_1
springer_journals_10_1007_s10766_025_00788_1
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References E Tejedor (788_CR17) 2017; 31
A Reuther (788_CR32) 2018; 111
788_CR22
788_CR21
788_CR43
788_CR20
788_CR42
J Nieplocha (788_CR40) 2006; 20
788_CR41
788_CR6
788_CR5
788_CR29
788_CR4
S Tomov (788_CR14) 2010; 36
788_CR28
S van der Walt (788_CR1) 2011
788_CR3
788_CR27
788_CR26
788_CR25
788_CR24
788_CR23
788_CR9
788_CR7
G Bosilca (788_CR8) 2013; 15
788_CR11
788_CR33
788_CR10
788_CR31
788_CR30
P Virtanen (788_CR2) 2020; 17
788_CR19
788_CR18
A Abdelfattah (788_CR15) 2016
788_CR39
788_CR16
788_CR38
788_CR37
788_CR36
788_CR13
788_CR35
788_CR12
788_CR34
References_xml – ident: 788_CR19
  doi: 10.1109/SC41405.2020.00066
– ident: 788_CR7
  doi: 10.1002/cpe.1631
– ident: 788_CR18
  doi: 10.1109/SC41404.2022.00056
– ident: 788_CR13
– ident: 788_CR11
– ident: 788_CR37
  doi: 10.1145/3332186.3332231
– ident: 788_CR38
– ident: 788_CR29
  doi: 10.1109/SBAC-PAD55451.2022.00025
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 788_CR2
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: 788_CR36
– ident: 788_CR16
– volume: 36
  start-page: 232
  issue: 5–6
  year: 2010
  ident: 788_CR14
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2009.12.005
– ident: 788_CR20
– ident: 788_CR27
  doi: 10.1145/3311790.3396656
– year: 2011
  ident: 788_CR1
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– ident: 788_CR24
– ident: 788_CR41
  doi: 10.1109/CLUSTERWorkshops61457.2023.00028
– ident: 788_CR35
  doi: 10.1109/ICPADS56603.2022.00117
– ident: 788_CR5
  doi: 10.1145/3447818.3460376
– ident: 788_CR30
  doi: 10.1145/3307681.3325401
– volume: 31
  start-page: 66
  issue: 1
  year: 2017
  ident: 788_CR17
  publication-title: Int. J. High Perf. Comput. Appl.
  doi: 10.1177/1094342015594678
– ident: 788_CR26
– volume: 20
  start-page: 203
  issue: 2
  year: 2006
  ident: 788_CR40
  publication-title: Int. J. High Perf. Comput. Appl.
  doi: 10.1177/1094342006064503
– ident: 788_CR3
– ident: 788_CR28
– ident: 788_CR31
– year: 2016
  ident: 788_CR15
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2818311
– ident: 788_CR34
  doi: 10.1109/CCGrid49817.2020.00-66
– ident: 788_CR10
– ident: 788_CR43
  doi: 10.1145/3295500.3356175
– ident: 788_CR12
– volume: 111
  start-page: 76
  year: 2018
  ident: 788_CR32
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.06.009
– volume: 15
  start-page: 36
  issue: 6
  year: 2013
  ident: 788_CR8
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2013.98
– ident: 788_CR22
  doi: 10.1109/IPDPS53621.2022.00073
– ident: 788_CR33
  doi: 10.1007/BFb0053987
– ident: 788_CR42
  doi: 10.1109/PAW-ATM49560.2019.00011
– ident: 788_CR39
  doi: 10.1007/978-0-387-09766-4_54
– ident: 788_CR9
  doi: 10.1109/SC.2012.71
– ident: 788_CR23
– ident: 788_CR21
– ident: 788_CR6
– ident: 788_CR25
– ident: 788_CR4
SSID ssj0009788
Score 2.3468256
Snippet Modern Python programs in high-performance computing call into compiled libraries and kernels for performance-critical tasks. However, effectively...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 16
SubjectTerms Computer Science
Graphs
Interpreters
Libraries
Parallel programming
Processor Architectures
Python
Run time (computers)
Software Engineering/Programming and Operating Systems
Theory of Computation
Workloads
Title Performance Characterization of Python Runtimes for Multi-device Task Parallel Programming
URI https://link.springer.com/article/10.1007/s10766-025-00788-1
https://www.proquest.com/docview/3178434609
Volume 53
WOSCitedRecordID wos001449019300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXixPrFaJQdvGug2zz1KsXiQstRaipcl2U1A7EO6VfDfO9mHq6IHhb1tEsI8Ml_IfDMInRsBegW7JcrokDCZKKJFF2xZAzYPlNYsp0ePb-VgoCaTMCpJYVmV7V49SeYn9SeymxQ-YZYTH9fg7rOONiDcKd-wYXg3rkvtyrzbJLgPJ5JxVVJlfl7jaziqMea3Z9E82vSb_9vnDtou0SW-KsxhF63Z-R5qVp0bcOnI--ghqvkCuPdRs7mgZOKFw9GbrymAh76RxMxmGAbjnKtLUuvPFjzS2ROOYOJ0aqc4KrK8ZrDPA3Tfvx71bkjZZYEk4CErknKWSmm7SjjNKTfSMiVUR1hLrWbUGOdSkyYhDRLtAked5cx2OHzSKM00PUSN-WJujxC2ynAqhE1MGDK4KWqnAD2YIJEAQhxNW-iiEnb8XBTTiOuyyV5sMYgtzsUWBy3UrvQRl46VxQB3FKNMdMIWuqzkX__-fbXjvw0_QVvdXIU-R6eNGqvliz1Fm8nr6jFbnuUG9w580NBc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50FfTiW1yfOXjTwHbz7FEWRXFdiq4iXkrSJiDurmJXwX_vtNtaFT0o9NYkhHlkJmS-bwD2rUS9ot1SbU1IuUo0NbKNtmwwNw-0MbyAR990Va-nb2_DqASFZVW1e_UkWZzUn8BuSuYFs4LmcQ3vPtMwwzFi5Yz5l1c3NdWuKrpNovsIqrjQJVTm5zW-hqM6x_z2LFpEm5PF_-1zCRbK7JIcTcxhGabcaAUWq84NpHTkVbiLarwA6XxwNk8gmeTRk-gt5xQgl3kjiaHLCA4mBVaXpi4_W0jfZA8kwomDgRuQaFLlNcR9rsH1yXG_c0rLLgs0QQ8Z01TwVCnX1tIbwYRVjmupW9I55gxn1nqf2jQJWZAYH3jmneCuJfBTVhtu2Do0Ro8jtwHEaSuYlC6xYcjxpmi8xuzBBonCJMSztAkHlbDjpwmZRlzTJudii1FscSG2OGjCdqWPuHSsLMZ0R3PGZStswmEl__r376tt_m34Hsyd9i-6cfesd74F8-1CnXm9zjY0xs8vbgdmk9fxffa8WxjfO0rd00A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7oKOLFXRzXHLxpcDpZexR1UJShuAyDl5K0CYizMTMK_nuTLlZFDyL01jSEt_S9R973PYBDzZ1end1iqVWIqUgkVrzpbFm53DyQStEMHt25Ee227HbD6BOKP-t2L68kc0yDZ2kaTE9GqT35BHwT3DfPMuxjnKuDZmGO-kZ6X6_fdSraXZFNnnSuxLCgTBawmZ_3-Bqaqnzz2xVpFnlay_8_8wosFVknOs3NZBVmzGANlsuJDqhw8HV4jCocATr74HLOoZpoaFH05rkG0K0fMNE3E-QWowzDi1Pj_znoXk2eUeQ-7PVMD0V591ffnXkDHloX92eXuJi-gBPnOVOcMpoKYZqSW8UI08JQyWWDG0OMokRra1OdJiEJEmUDS6xh1DSYe4SWiiqyCbXBcGC2ABmpGeHcJDoMqasglZUuq9BBIlxyYklah6NS8PEoJ9mIKzplL7bYiS3OxBYHddgtdRMXDjeJXRokKaG8EdbhuNRF9fr33bb_tvwAFqLzVnxz1b7egcVmpk3fxrMLten4xezBfPI6fZqM9zM7fAcuC9wk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Characterization+of+Python+Runtimes+for+Multi-device+Task+Parallel+Programming&rft.jtitle=International+journal+of+parallel+programming&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=53&rft.issue=2&rft.spage=16&rft_id=info:doi/10.1007%2Fs10766-025-00788-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon