A Generalization of Hoffman’s Lemma in Banach Spaces and Applications

A generalized version of an important theorem called Hoffman’s lemma in the book by Bonnans and Shapiro (Perturbation analysis of optimization problems, Springer, Berlin, 2000), which deals with generalized polyhedral convex multifunctions, is obtained in this paper. Under a mild assumption, the res...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics & optimization Ročník 91; číslo 2; s. 40
Hlavní autori: Huy, Nguyen Quang, Tuan, Hoang Ngoc, Yen, Nguyen Dong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2025
Springer Nature B.V
Predmet:
ISSN:0095-4616, 1432-0606
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A generalized version of an important theorem called Hoffman’s lemma in the book by Bonnans and Shapiro (Perturbation analysis of optimization problems, Springer, Berlin, 2000), which deals with generalized polyhedral convex multifunctions, is obtained in this paper. Under a mild assumption, the result allows us to demonstrate that the domain of a generalized polyhedral convex multifunction is closed and the multifunction is Lipschitz continuous on its effective domain. As concrete applications of the results, we prove some local error bounds for generalized affine variational inequalities and a theorem on the (strong) convergence of feasible descent methods for solving generalized quadratic programming problems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-025-10238-6