A Generalization of Hoffman’s Lemma in Banach Spaces and Applications

A generalized version of an important theorem called Hoffman’s lemma in the book by Bonnans and Shapiro (Perturbation analysis of optimization problems, Springer, Berlin, 2000), which deals with generalized polyhedral convex multifunctions, is obtained in this paper. Under a mild assumption, the res...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics & optimization Vol. 91; no. 2; p. 40
Main Authors: Huy, Nguyen Quang, Tuan, Hoang Ngoc, Yen, Nguyen Dong
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2025
Springer Nature B.V
Subjects:
ISSN:0095-4616, 1432-0606
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A generalized version of an important theorem called Hoffman’s lemma in the book by Bonnans and Shapiro (Perturbation analysis of optimization problems, Springer, Berlin, 2000), which deals with generalized polyhedral convex multifunctions, is obtained in this paper. Under a mild assumption, the result allows us to demonstrate that the domain of a generalized polyhedral convex multifunction is closed and the multifunction is Lipschitz continuous on its effective domain. As concrete applications of the results, we prove some local error bounds for generalized affine variational inequalities and a theorem on the (strong) convergence of feasible descent methods for solving generalized quadratic programming problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-025-10238-6