Unsupervised fabric defect detection algorithm based on vector quantization and feature distance
Fabric defect detection is an indispensable step in textile fabric production, and many deep-learning-based methods have been proposed. However, existing supervised methods are limited by the lack of annotated datasets, and unsupervised anomaly detection methods still fail to meet the requirements o...
Uložené v:
| Vydané v: | Textile research journal |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
05.06.2025
|
| ISSN: | 0040-5175, 1746-7748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Fabric defect detection is an indispensable step in textile fabric production, and many deep-learning-based methods have been proposed. However, existing supervised methods are limited by the lack of annotated datasets, and unsupervised anomaly detection methods still fail to meet the requirements of practical applications. To address these issues, a novel unsupervised dual-scale method based on feature distance, called DSFD, is proposed. First, leveraging the periodic characteristics of fabric textures, a method for obtaining feature templates of image patches and a method for calculating anomaly scores of image patches are proposed based on a vector quantized variational autoencoder (VQ-VAE). Second, to address the issue that codebook vectors cannot be effectively activated using Euclidean distance-based quantization mechanism during model training and testing, a cosine similarity-based quantization mechanism is proposed. Ablation experiments demonstrate its effectiveness in improving defect detection performance. Finally, to enhance the robustness of the model when applied to different types of fabric images, a dual-scale method is proposed. The proposed method was compared with five state-of-the-art anomaly detection methods on three open-source datasets, achieving superior defect detection performance. It demonstrated a performance improvement of 2.1% in image-level defect detection and 1.3% in pixel-level segmentation in terms of area under the curve scores. |
|---|---|
| AbstractList | Fabric defect detection is an indispensable step in textile fabric production, and many deep-learning-based methods have been proposed. However, existing supervised methods are limited by the lack of annotated datasets, and unsupervised anomaly detection methods still fail to meet the requirements of practical applications. To address these issues, a novel unsupervised dual-scale method based on feature distance, called DSFD, is proposed. First, leveraging the periodic characteristics of fabric textures, a method for obtaining feature templates of image patches and a method for calculating anomaly scores of image patches are proposed based on a vector quantized variational autoencoder (VQ-VAE). Second, to address the issue that codebook vectors cannot be effectively activated using Euclidean distance-based quantization mechanism during model training and testing, a cosine similarity-based quantization mechanism is proposed. Ablation experiments demonstrate its effectiveness in improving defect detection performance. Finally, to enhance the robustness of the model when applied to different types of fabric images, a dual-scale method is proposed. The proposed method was compared with five state-of-the-art anomaly detection methods on three open-source datasets, achieving superior defect detection performance. It demonstrated a performance improvement of 2.1% in image-level defect detection and 1.3% in pixel-level segmentation in terms of area under the curve scores. |
| Author | Li, Liqing Wang, Jun Zhang, Lei Wei, Qiyu Zhan, Zhu |
| Author_xml | – sequence: 1 givenname: Qiyu surname: Wei fullname: Wei, Qiyu organization: Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, PR China – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, PR China – sequence: 3 givenname: Zhu surname: Zhan fullname: Zhan, Zhu organization: School of Textiles and Fashion Art Building, Shanghai University of Engineering Science, PR China – sequence: 4 givenname: Liqing surname: Li fullname: Li, Liqing organization: Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, PR China – sequence: 5 givenname: Jun orcidid: 0000-0002-5655-6070 surname: Wang fullname: Wang, Jun organization: Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, PR China |
| BookMark | eNplkM1OwzAQhC1UJNLCA3DLCwTsOImdI6r4kypxoeewWW_AqHWK7VSCp8dRuXH6VjOj0WqWbOFGR4xdC34jhFK3nFe8FqouayGrshHqjGVCVU2hVKUXLJv9Yg5csGUIn5xzrZXO2NvWhelA_mgDmXyA3lvMDQ2EMSEm2NHlsHsfvY0f-7yHOZekY7JGn39N4KL9gVPMpQqCOHnKjQ0RHNIlOx9gF-jqjyu2fbh_XT8Vm5fH5_XdpkDRtrFQJExftxpb7CWS7o3kQzpakCD7ErCW6SttmhKVaqkZAJIiUCNwgyDliolTL_oxBE9Dd_B2D_67E7ybJ-r-TSR_AV7bXpI |
| Cites_doi | 10.1007/978-3-030-68799-1_35 10.1177/0040517517743688 10.1109/CVPR52729.2023.01954 10.1109/ICECE54449.2021.9674302 10.1007/s10489-021-02981-4 10.1177/0040517519862880 10.1177/15589250221101382 10.1007/978-3-030-69544-6_23 10.1177/0040517520966733 10.1007/978-0-387-73003-5_196 10.1007/s11042-022-13470-2 10.1080/00405000.2013.836784 10.1111/cote.12624 10.1177/0040517520928604 10.1117/1.600663 10.1109/CVPR46437.2021.00954 10.1016/j.eswa.2020.114066 10.1016/j.imavis.2006.07.028 10.1007/s11042-023-16340-7 10.1016/j.patrec.2004.11.016 10.1109/ICCV.2019.00179 10.14504/ajr.8.S1.18 10.1016/j.neucom.2020.11.018 10.1109/TIM.2022.3196436 10.1109/CVPR42600.2020.01438 10.1007/s11063-019-10113-w 10.1016/j.patcog.2020.107706 10.1088/1742-6596/1948/1/012160 10.3390/s18010209 10.1109/ACCESS.2023.3282993 10.1007/s11042-022-13568-7 10.1109/COMST.2014.2336610 10.1016/j.compind.2021.103551 10.1016/S0031-3203(01)00188-1 10.1177/00405175231206820 10.1108/IJCST-11-2018-0135 10.3390/app10072511 10.3390/s18041064 10.1109/CVPR.2016.90 10.1109/ACVMOT.2005.115 10.3390/app12136823 10.1007/978-3-319-99695-0_6 10.1007/s11554-020-01023-5 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1177/00405175251342617 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1746-7748 |
| ExternalDocumentID | 10_1177_00405175251342617 |
| GroupedDBID | -ET -~X .-4 .2L .2N .DC 01A 0R~ 123 18M 1~K 29Q 31W 31X 31Z 4.4 54M 56W 5VS 8R4 8R5 AABCJ AABOD AACTG AADIR AAHBH AAJPV AAPEO AAPII AAQXI AATAA AATBZ AAYXX ABAWP ABCCA ABCJG ABFXH ABHQH ABIDT ABJCF ABJNI ABLUO ABPNF ABQKF ABQPY ABQXT ABUAX ABUJY ACCVC ACDXX ACFUR ACFZE ACGFO ACGFS ACGOD ACIWK ACLZU ACOXC ACROE ACSIQ ACUAV ACUIR ACXKE ADDLC ADEBD ADFRT ADNON ADNWM ADRRZ ADTOS ADVBO AEDFJ AEDXQ AENEX AEPTA AESZF AEUHG AEVPJ AEWDL AEWHI AFKBI AFKRG AFMOU AFQAA AFRAH AGDVU AGKLV AGNWV AGWFA AGWNL AHDMH AHWHD AJGYC AJHME AJUZI AJVBE ALMA_UNASSIGNED_HOLDINGS AMNSR ANDLU ARTOV ATCPS AUTPY AUVAJ AYAKG AYPQM AZFZN B8T B8Z B94 BBRGL BCU BDDNI BDZRT BENPR BLC BMVBW BPACV BYIEH CITATION CS3 DG~ DH. DO- DU5 DV7 DV8 E.- EBS FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ J8X K.F M0K N9A O9- OFU P.B P2P Q1R Q2X Q7P Q83 ROL RXW S01 SAUOL SCNPE SFB SFC SFK SFT SGU SGV SGZ SHB SPJ SPK SPP SPV SSDHQ STM TAE U5U WH7 ~KM |
| ID | FETCH-LOGICAL-c199t-7e1db598c9cb3ce8bd30f3ce9a3a3b2ac53def8d62c779e6faa53d1c8ca0dca33 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502752100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-5175 |
| IngestDate | Sat Nov 29 07:48:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c199t-7e1db598c9cb3ce8bd30f3ce9a3a3b2ac53def8d62c779e6faa53d1c8ca0dca33 |
| ORCID | 0000-0002-5655-6070 |
| ParticipantIDs | crossref_primary_10_1177_00405175251342617 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-05 |
| PublicationDateYYYYMMDD | 2025-06-05 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Textile research journal |
| PublicationYear | 2025 |
| References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 Zhang Y (e_1_3_2_45_2) 2023 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 Tao X (e_1_3_2_23_2) 2022; 71 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 Samariya D (e_1_3_2_22_2) 2023; 10 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_44_2 e_1_3_2_25_2 Van Den Oord A (e_1_3_2_46_2) 2017; 30 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
| References_xml | – ident: e_1_3_2_39_2 doi: 10.1007/978-3-030-68799-1_35 – ident: e_1_3_2_20_2 doi: 10.1177/0040517517743688 – ident: e_1_3_2_51_2 doi: 10.1109/CVPR52729.2023.01954 – ident: e_1_3_2_31_2 doi: 10.1109/ICECE54449.2021.9674302 – ident: e_1_3_2_18_2 doi: 10.1007/s10489-021-02981-4 – ident: e_1_3_2_29_2 doi: 10.1177/0040517519862880 – ident: e_1_3_2_28_2 doi: 10.1177/15589250221101382 – volume: 30 start-page: 6307 year: 2017 ident: e_1_3_2_46_2 article-title: Neural discrete representation learning publication-title: Adv Neur Inform Process Syst – ident: e_1_3_2_36_2 doi: 10.1007/978-3-030-69544-6_23 – ident: e_1_3_2_40_2 doi: 10.1177/0040517520966733 – ident: e_1_3_2_41_2 doi: 10.1007/978-0-387-73003-5_196 – ident: e_1_3_2_15_2 doi: 10.1007/s11042-022-13470-2 – ident: e_1_3_2_16_2 doi: 10.1080/00405000.2013.836784 – ident: e_1_3_2_30_2 – ident: e_1_3_2_34_2 doi: 10.1111/cote.12624 – ident: e_1_3_2_12_2 doi: 10.1177/0040517520928604 – ident: e_1_3_2_2_2 doi: 10.1117/1.600663 – ident: e_1_3_2_47_2 – ident: e_1_3_2_43_2 doi: 10.1109/CVPR46437.2021.00954 – ident: e_1_3_2_49_2 doi: 10.1016/j.eswa.2020.114066 – ident: e_1_3_2_6_2 doi: 10.1016/j.imavis.2006.07.028 – ident: e_1_3_2_19_2 doi: 10.1007/s11042-023-16340-7 – year: 2023 ident: e_1_3_2_45_2 article-title: ECF-STPM: A robust crack detection method for railway catenary components publication-title: IEEE Trans Instrum Meas – ident: e_1_3_2_4_2 doi: 10.1016/j.patrec.2004.11.016 – ident: e_1_3_2_32_2 doi: 10.1109/ICCV.2019.00179 – ident: e_1_3_2_26_2 doi: 10.14504/ajr.8.S1.18 – ident: e_1_3_2_42_2 doi: 10.1016/j.neucom.2020.11.018 – volume: 71 start-page: 1 year: 2022 ident: e_1_3_2_23_2 article-title: Deep learning for unsupervised anomaly localization in industrial images: A survey publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2022.3196436 – ident: e_1_3_2_33_2 doi: 10.1109/CVPR42600.2020.01438 – ident: e_1_3_2_14_2 doi: 10.1007/s11063-019-10113-w – ident: e_1_3_2_50_2 doi: 10.1016/j.patcog.2020.107706 – ident: e_1_3_2_11_2 doi: 10.1088/1742-6596/1948/1/012160 – ident: e_1_3_2_37_2 doi: 10.3390/s18010209 – ident: e_1_3_2_21_2 doi: 10.1109/ACCESS.2023.3282993 – volume: 10 start-page: 829 issue: 3 year: 2023 ident: e_1_3_2_22_2 article-title: A comprehensive survey of anomaly detection algorithms publication-title: Ann Data Sci – ident: e_1_3_2_17_2 doi: 10.1007/s11042-022-13568-7 – ident: e_1_3_2_48_2 doi: 10.1109/COMST.2014.2336610 – ident: e_1_3_2_10_2 doi: 10.1016/j.compind.2021.103551 – ident: e_1_3_2_3_2 doi: 10.1016/S0031-3203(01)00188-1 – ident: e_1_3_2_44_2 doi: 10.1177/00405175231206820 – ident: e_1_3_2_7_2 doi: 10.1108/IJCST-11-2018-0135 – ident: e_1_3_2_24_2 doi: 10.3390/app10072511 – ident: e_1_3_2_25_2 doi: 10.3390/s18041064 – ident: e_1_3_2_38_2 doi: 10.1109/CVPR.2016.90 – ident: e_1_3_2_5_2 doi: 10.1109/ACVMOT.2005.115 – ident: e_1_3_2_8_2 doi: 10.3390/app12136823 – ident: e_1_3_2_13_2 doi: 10.1007/s10489-021-02981-4 – ident: e_1_3_2_35_2 – ident: e_1_3_2_9_2 doi: 10.1007/978-3-319-99695-0_6 – ident: e_1_3_2_27_2 doi: 10.1007/s11554-020-01023-5 |
| SSID | ssj0008878 |
| Score | 2.4148974 |
| Snippet | Fabric defect detection is an indispensable step in textile fabric production, and many deep-learning-based methods have been proposed. However, existing... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Unsupervised fabric defect detection algorithm based on vector quantization and feature distance |
| WOSCitedRecordID | wos001502752100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVSPB databaseName: SAGE Journals HSS Package 2015 customDbUrl: eissn: 1746-7748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008878 issn: 0040-5175 databaseCode: AEVPJ dateStart: 19990101 isFulltext: true titleUrlDefault: http://journals.sagepub.com/ providerName: SAGE Publications |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7WraA-iFbFemMefHKJJDuZzMxjkYpIKRW20rd2rm6gTdfd7NL-e89ckoYtgn3wJYTDzBDyfTnnZM5lEPpIrBRMO5JRUomsNJXKZEXKDEZX1PCCaqvCYRPs6Iifnorj0ei8q4XZXLCm4dfXYvFfoQYZgO1LZ-8Bd78oCOAeQIcrwA7XfwL-pFmtF14DrMCXdFL5VHljQ49iY1ubjga_-HW1rNv55cSbMeNDBpuwf--rLJs2FWeGyIKzofenD-W0PUWSOzsD1Q5qZZJaBs0nwycM8Z6QLPCjvlnf2aE-tPVQFqIk837YYazarn93pjXtTExpyKCiQ21b5hkt4skon21UsKyswKOP3TXvqu8QQPbz_DRwvYj_w2O3tqqLz2-ZsD6xsOi6l28v8QDtTBkVfIx29g9-Hn_vrTUoWd5lVvoZKfIdmnJtLzLwXQZOyOwZepr-HvB-RP05GtlmFz3qistXu-jJoL_kC3Q-5AKOXMCRC7jnAu65gAMXMIgiF_CQCxi4gBMXcMeFl-jk68Hsy7csHamR6UKINmO2MApegxZaEW25MiR3cCMkkURNpaYEnoKbaqoZE7ZyUoKk0FzL3GhJyCs0bq4a-xph6qjWqjJ57lQpieMMPnpSWcKcFMq4PfSpe1lni9g55eyv8Ly5z-C36PEt3d6hcbtc2_food609Wr5IQH8B5I-Zww |
| linkProvider | SAGE Publications |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+fabric+defect+detection+algorithm+based+on+vector+quantization+and+feature+distance&rft.jtitle=Textile+research+journal&rft.au=Wei%2C+Qiyu&rft.au=Zhang%2C+Lei&rft.au=Zhan%2C+Zhu&rft.au=Li%2C+Liqing&rft.date=2025-06-05&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177%2F00405175251342617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00405175251342617 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5175&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5175&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5175&client=summon |