Detecting Attacks Using Artificial Neural Networks
The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural...
Saved in:
| Published in: | Automatic control and computer sciences Vol. 58; no. 8; pp. 1218 - 1225 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Moscow
Pleiades Publishing
01.12.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0146-4116, 1558-108X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural network architecture is selected taking into account the loss function for a limited set of attack classes. The application of TensorFlow and Keras Tuner libraries (frameworks) for the software implementation of an attack detection algorithm is shown. An experiment on the selection of neural network architecture and its training is described. The accuracy obtained in experiments is 94–98% for different classes of attacks. |
|---|---|
| AbstractList | The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural network architecture is selected taking into account the loss function for a limited set of attack classes. The application of TensorFlow and Keras Tuner libraries (frameworks) for the software implementation of an attack detection algorithm is shown. An experiment on the selection of neural network architecture and its training is described. The accuracy obtained in experiments is 94–98% for different classes of attacks. |
| Author | Sikarev, I. A. Tatarnikova, T. M. |
| Author_xml | – sequence: 1 givenname: I. A. surname: Sikarev fullname: Sikarev, I. A. email: sikarev@yandex.ru organization: Russian State Hydrometeorological University – sequence: 2 givenname: T. M. surname: Tatarnikova fullname: Tatarnikova, T. M. organization: St. Petersburg State University of Aerospace Instrumentation |
| BookMark | eNp1kEFLw0AQhRepYFr9Ad4CnqMzyW52cyxVq1D0oAVvYbOZlLQ1qbsbxH9v0ggexNNjeN97A2_KJk3bEGOXCNcJQnLzAshTjpjGXAIooU5YgEKoCEG9TVgw2NHgn7Gpc1uA3lNpwOJb8mR83WzCuffa7Fy4dsfL-rqqTa334RN19ij-s7U7d85OK713dPGjM7a-v3tdPESr5-XjYr6KDGbKRxqzGAyUIFMtUBZQkAGENKs0hyoF4oXOKBHaiAwNmYJTKWMOKtElVNwkM3Y19h5s-9GR8_m27WzTv8yTWHDFQUrZUzhSxrbOWaryg63ftf3KEfJhmvzPNH0mHjOuZ5sN2d_m_0PfVsFmCQ |
| Cites_doi | 10.1007/978-3-030-64430-7_1 10.1109/WCNC.2017.7925567 10.3390/sym13122425 10.3103/s0146411617080132 10.31799/1684-8853-2021-6-42-52 10.1007/978-3-030-93872-7_29 10.24411/2520-6990-2019-11088 10.25559/SITITO.14.201803.626-632 |
| ContentType | Journal Article |
| Copyright | Allerton Press, Inc. 2024 ISSN 0146-4116, Automatic Control and Computer Sciences, 2024, Vol. 58, No. 8, pp. 1218–1225. © Allerton Press, Inc., 2024.Russian Text © The Author(s), 2023, published in Problemy Informatsionnoi Bezopasnosti, Komp’yuternye Sistemy, 2023, No. 4(57), pp. 84–94. Allerton Press, Inc. 2024. |
| Copyright_xml | – notice: Allerton Press, Inc. 2024 ISSN 0146-4116, Automatic Control and Computer Sciences, 2024, Vol. 58, No. 8, pp. 1218–1225. © Allerton Press, Inc., 2024.Russian Text © The Author(s), 2023, published in Problemy Informatsionnoi Bezopasnosti, Komp’yuternye Sistemy, 2023, No. 4(57), pp. 84–94. – notice: Allerton Press, Inc. 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3103/S0146411624700858 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-108X |
| EndPage | 1225 |
| ExternalDocumentID | 10_3103_S0146411624700858 |
| GroupedDBID | -Y2 -~X .86 .VR 06D 0R~ 0VY 1N0 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5GY 5VS 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG COF CS3 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9O PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK8 YLTOR ZMTXR ~A9 AAYXX ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c198t-a1920c0d076a517b0bec01069fa40f60e4ba9e35ac591cecb4ed724083ad0f4c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001444845400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0146-4116 |
| IngestDate | Tue Dec 02 10:03:27 EST 2025 Sat Nov 29 08:07:07 EST 2025 Sat Mar 15 01:10:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | artificial neural network loss function intrusion detection system training classification dataset architecture optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c198t-a1920c0d076a517b0bec01069fa40f60e4ba9e35ac591cecb4ed724083ad0f4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3254840777 |
| PQPubID | 2043879 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_3254840777 crossref_primary_10_3103_S0146411624700858 springer_journals_10_3103_S0146411624700858 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Automatic control and computer sciences |
| PublicationTitleAbbrev | Aut. Control Comp. Sci |
| PublicationYear | 2024 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | A.G. Rostovtsev (7784_CR12) 2014; 17 M. Poltavtseva (7784_CR15) 2021; 13 M. Kalinin (7784_CR4) 2015; 68 7784_CR8 7784_CR7 7784_CR6 7784_CR5 7784_CR3 7784_CR2 7784_CR1 7784_CR14 7784_CR13 7784_CR11 D.S. Lavrova (7784_CR16) 2017; 51 N.F. Bakhareva (7784_CR9) 2018; 14 7784_CR10 7784_CR18 7784_CR17 |
| References_xml | – ident: 7784_CR5 – volume: 68 start-page: 909 year: 2015 ident: 7784_CR4 publication-title: Proceedings of the Bulgarian Academy of Sciences – ident: 7784_CR6 – ident: 7784_CR7 – ident: 7784_CR2 – ident: 7784_CR1 – ident: 7784_CR3 doi: 10.1007/978-3-030-64430-7_1 – ident: 7784_CR13 doi: 10.1109/WCNC.2017.7925567 – volume: 13 start-page: 2425 year: 2021 ident: 7784_CR15 publication-title: Symmetry doi: 10.3390/sym13122425 – ident: 7784_CR18 – volume: 51 start-page: 817 year: 2017 ident: 7784_CR16 publication-title: Autom. Control Comput. Sci. doi: 10.3103/s0146411617080132 – ident: 7784_CR17 – ident: 7784_CR14 doi: 10.31799/1684-8853-2021-6-42-52 – ident: 7784_CR10 – ident: 7784_CR8 doi: 10.1007/978-3-030-93872-7_29 – ident: 7784_CR11 doi: 10.24411/2520-6990-2019-11088 – volume: 14 start-page: 626 year: 2018 ident: 7784_CR9 publication-title: Sovremennye Informatsionnye Tekhnologii i IT-Obrazovanie doi: 10.25559/SITITO.14.201803.626-632 – volume: 17 start-page: 215 year: 2014 ident: 7784_CR12 publication-title: Nonlinear Phenom. Complex Syst. |
| SSID | ssj0055886 |
| Score | 2.2940562 |
| Snippet | The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1218 |
| SubjectTerms | Algorithms Artificial neural networks Computer Science Control Structures and Microprogramming Datasets Neural networks Software Special libraries |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-LqKj14UsI2Tdo0J1nURRAWDwp7K3kVvOzqtvr7zaQt6wO9eGppSSiTafJNZvJ9AOfKQ4LcCixql4ZwbQ3RWjIipUVGM-Mhrg5iE2IyyadT-dBuuFVtWWU3J4aJ2s4N7pEPmY9kfDAihLh6eSWoGoXZ1VZCYxXWaJJQ9PN7QbqZOE3zoPSI_CiEU5o1WU1U1hpiUVOGzxIuEHbkX9elJdj8lh8Ny854-78fvANbLeCMRo2H7MKKm-3B5icawn1IbhymEvx9NKprPHQfhUqC0KhhmIiQxCNcQtV4dQBP49vH6zvSaikQQ2VeE-WRXGxiG4tMpVTo2I8dhoOyVDwus9hxraRjqTKppMYZzZ0VSH_GlI1Lbtgh9GbzmTuCiJUsK43hlhnGBffNPCZiqcysxzZ-ePtw0VmyeGkoMwofaqDZix9m78Ogs17R_j1VsTRdHy47-y9f_9rZ8d-dncBG4iFJU4wygF69eHOnsG7e6-dqcRZc5wMfE8aO priority: 102 providerName: ProQuest |
| Title | Detecting Attacks Using Artificial Neural Networks |
| URI | https://link.springer.com/article/10.3103/S0146411624700858 https://www.proquest.com/docview/3254840777 |
| Volume | 58 |
| WOSCitedRecordID | wos001444845400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1558-108X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1558-108X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1558-108X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1558-108X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1558-108X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: RSV dateStart: 20070201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYxgEODAaI8Zh64ASKSJe0aY4DNiEhTdMGaOJStUkqcRloLfx-nLTVeB7g0laqG1VOHH-Wv9gApwlCgkgLS2qXivBUK5KmkhEpta1ophDipq7ZhBiPo_lcTqpz3HnNdq9Tkm6ndnElZReWhhRy3w_7XFigEDWghd4ustY4nT3U228QRK69o5UmVrxMZf48xGdntEKYX5KizteM2v_6y23YqqClNyjXwg6smUUH2nXbBq-y4g5sfqhBuAv9a2PzCPjsDYrCnrj3HI3AjVOWl_BsBQ93c5TxfA_uR8O7qxtSNVIgypdRQRKEcVRRTUWYBL5IKU6cjQVllnCahdTwNJGGBYkKpK-MSrnRwtY-Y4mmGVdsH5qL54U5AI9lLMyU4popxgXHzxAQsUCGGoENzm0XzmqNxi9lvYwY4wyrm_ibbrpwXOs8rkwnjxmGrBh1CiG6cF7rePX618EO_yR9BBt9hCclMeUYmsXy1ZzAunornvJlD1qXw_Fk2oPGrSA9ywed4XUSPPbcWnsHG-vGKw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT4NAEJ74StSDb2N9ctCLZlPKLix7MMb4iKbaeKhJbwi7S-KlrRY1_il_ozNLSX1Ebx48QSC7AWaY_T5m-AZgN0VIEBtJRe1KM5EZzbJMcaaUIUUzjRA3c80mZKsVdzrqZgzeqn9hqKyyiokuUJuepm_kdY5MBsmIlPKo_8CoaxRlV6sWGqVbNO3rC1K2weHlKdp3LwjOz9onF2zYVYBpJNgFSxHT-No3SODTsCEzH--CiJHKU-HnkW9FlirLw1SHqqGtzoQ1koTAeGr8XGiO847DpOCxJK3-pmRV5A_D2HWWJD0WJhqNqMyiUievOhVRRXQsEJJgTvx5HRyB2y_5WLfMnc__twe0AHNDQO0dl2_AIozZ7hLMfpBZXIbg1FKqBPe946IgUQHPVUq4QaWChkciJW7jquIHK3D7Jxe9ChPdXteugcdzHuVaC8M1F1LgMMR8PFSRQeyG7luD_cpySb-UBEmQSpGZk29mrsFmZa1kGB0GychUNTio7D06_eNk679PtgPTF-3rq-TqstXcgJkA4VdZeLMJE8Xjk92CKf1c3A8et53benD3127wDgPZJIs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujB-sRq1Rw8KaGb7iabPRZrUZRS8EFvIfsIeImlif5-dzYJ9XkQTwlkMoTZ3ez3MbPfAJylFhLEmmNRu1A-k1r5UgrqC6FR0UxZiCtdswk-HsfTqZjUfU6Lptq9SUlWZxpQpSkvezOd9RzHJLSHJUkRC4KozziChngZVhj2DEK6fv_U_IrDMHatHtHaR_Mqrfmzi88b0wJtfkmQun1n1P73F2_BZg05vUE1R7ZhyeQ70G7aOXj16t6BjQ_ahLvQHxrML9h7b1CWeBLfc-UFzk8lO-Ghsoe7uFLyYg8eR1cPl9d-3WDBV4GISz-18I4oogmP0jDgktgBRY4ospSRLCKGyVQYGqYqFIEySjKjOWqi0VSTjCm6D638JTcH4NGMRplSTFNFGWf2NQuUaCgibQGPHfMOnDfRTWaVjkZi-QfGJvkWmw50m_gn9ZIqEmqprGWjnPMOXDTxXjz-1dnhn6xPYW0yHCV3N-PbI1jvWwRT1a50oVXOX80xrKq38rmYn7iJ9g4u7c2R |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Attacks+Using+Artificial+Neural+Networks&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Sikarev%2C+I.+A.&rft.au=Tatarnikova%2C+T.+M.&rft.date=2024-12-01&rft.pub=Pleiades+Publishing&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=58&rft.issue=8&rft.spage=1218&rft.epage=1225&rft_id=info:doi/10.3103%2FS0146411624700858&rft.externalDocID=10_3103_S0146411624700858 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon |