Detecting Attacks Using Artificial Neural Networks

The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural...

Full description

Saved in:
Bibliographic Details
Published in:Automatic control and computer sciences Vol. 58; no. 8; pp. 1218 - 1225
Main Authors: Sikarev, I. A., Tatarnikova, T. M.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01.12.2024
Springer Nature B.V
Subjects:
ISSN:0146-4116, 1558-108X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural network architecture is selected taking into account the loss function for a limited set of attack classes. The application of TensorFlow and Keras Tuner libraries (frameworks) for the software implementation of an attack detection algorithm is shown. An experiment on the selection of neural network architecture and its training is described. The accuracy obtained in experiments is 94–98% for different classes of attacks.
AbstractList The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural network architecture is selected taking into account the loss function for a limited set of attack classes. The application of TensorFlow and Keras Tuner libraries (frameworks) for the software implementation of an attack detection algorithm is shown. An experiment on the selection of neural network architecture and its training is described. The accuracy obtained in experiments is 94–98% for different classes of attacks.
Author Sikarev, I. A.
Tatarnikova, T. M.
Author_xml – sequence: 1
  givenname: I. A.
  surname: Sikarev
  fullname: Sikarev, I. A.
  email: sikarev@yandex.ru
  organization: Russian State Hydrometeorological University
– sequence: 2
  givenname: T. M.
  surname: Tatarnikova
  fullname: Tatarnikova, T. M.
  organization: St. Petersburg State University of Aerospace Instrumentation
BookMark eNp1kEFLw0AQhRepYFr9Ad4CnqMzyW52cyxVq1D0oAVvYbOZlLQ1qbsbxH9v0ggexNNjeN97A2_KJk3bEGOXCNcJQnLzAshTjpjGXAIooU5YgEKoCEG9TVgw2NHgn7Gpc1uA3lNpwOJb8mR83WzCuffa7Fy4dsfL-rqqTa334RN19ij-s7U7d85OK713dPGjM7a-v3tdPESr5-XjYr6KDGbKRxqzGAyUIFMtUBZQkAGENKs0hyoF4oXOKBHaiAwNmYJTKWMOKtElVNwkM3Y19h5s-9GR8_m27WzTv8yTWHDFQUrZUzhSxrbOWaryg63ftf3KEfJhmvzPNH0mHjOuZ5sN2d_m_0PfVsFmCQ
Cites_doi 10.1007/978-3-030-64430-7_1
10.1109/WCNC.2017.7925567
10.3390/sym13122425
10.3103/s0146411617080132
10.31799/1684-8853-2021-6-42-52
10.1007/978-3-030-93872-7_29
10.24411/2520-6990-2019-11088
10.25559/SITITO.14.201803.626-632
ContentType Journal Article
Copyright Allerton Press, Inc. 2024 ISSN 0146-4116, Automatic Control and Computer Sciences, 2024, Vol. 58, No. 8, pp. 1218–1225. © Allerton Press, Inc., 2024.Russian Text © The Author(s), 2023, published in Problemy Informatsionnoi Bezopasnosti, Komp’yuternye Sistemy, 2023, No. 4(57), pp. 84–94.
Allerton Press, Inc. 2024.
Copyright_xml – notice: Allerton Press, Inc. 2024 ISSN 0146-4116, Automatic Control and Computer Sciences, 2024, Vol. 58, No. 8, pp. 1218–1225. © Allerton Press, Inc., 2024.Russian Text © The Author(s), 2023, published in Problemy Informatsionnoi Bezopasnosti, Komp’yuternye Sistemy, 2023, No. 4(57), pp. 84–94.
– notice: Allerton Press, Inc. 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3103/S0146411624700858
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-108X
EndPage 1225
ExternalDocumentID 10_3103_S0146411624700858
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c198t-a1920c0d076a517b0bec01069fa40f60e4ba9e35ac591cecb4ed724083ad0f4c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001444845400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0146-4116
IngestDate Tue Dec 02 10:03:27 EST 2025
Sat Nov 29 08:07:07 EST 2025
Sat Mar 15 01:10:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords artificial neural network
loss function
intrusion detection system
training
classification
dataset
architecture optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c198t-a1920c0d076a517b0bec01069fa40f60e4ba9e35ac591cecb4ed724083ad0f4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254840777
PQPubID 2043879
PageCount 8
ParticipantIDs proquest_journals_3254840777
crossref_primary_10_3103_S0146411624700858
springer_journals_10_3103_S0146411624700858
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automatic control and computer sciences
PublicationTitleAbbrev Aut. Control Comp. Sci
PublicationYear 2024
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References A.G. Rostovtsev (7784_CR12) 2014; 17
M. Poltavtseva (7784_CR15) 2021; 13
M. Kalinin (7784_CR4) 2015; 68
7784_CR8
7784_CR7
7784_CR6
7784_CR5
7784_CR3
7784_CR2
7784_CR1
7784_CR14
7784_CR13
7784_CR11
D.S. Lavrova (7784_CR16) 2017; 51
N.F. Bakhareva (7784_CR9) 2018; 14
7784_CR10
7784_CR18
7784_CR17
References_xml – ident: 7784_CR5
– volume: 68
  start-page: 909
  year: 2015
  ident: 7784_CR4
  publication-title: Proceedings of the Bulgarian Academy of Sciences
– ident: 7784_CR6
– ident: 7784_CR7
– ident: 7784_CR2
– ident: 7784_CR1
– ident: 7784_CR3
  doi: 10.1007/978-3-030-64430-7_1
– ident: 7784_CR13
  doi: 10.1109/WCNC.2017.7925567
– volume: 13
  start-page: 2425
  year: 2021
  ident: 7784_CR15
  publication-title: Symmetry
  doi: 10.3390/sym13122425
– ident: 7784_CR18
– volume: 51
  start-page: 817
  year: 2017
  ident: 7784_CR16
  publication-title: Autom. Control Comput. Sci.
  doi: 10.3103/s0146411617080132
– ident: 7784_CR17
– ident: 7784_CR14
  doi: 10.31799/1684-8853-2021-6-42-52
– ident: 7784_CR10
– ident: 7784_CR8
  doi: 10.1007/978-3-030-93872-7_29
– ident: 7784_CR11
  doi: 10.24411/2520-6990-2019-11088
– volume: 14
  start-page: 626
  year: 2018
  ident: 7784_CR9
  publication-title: Sovremennye Informatsionnye Tekhnologii i IT-Obrazovanie
  doi: 10.25559/SITITO.14.201803.626-632
– volume: 17
  start-page: 215
  year: 2014
  ident: 7784_CR12
  publication-title: Nonlinear Phenom. Complex Syst.
SSID ssj0055886
Score 2.2940562
Snippet The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1218
SubjectTerms Algorithms
Artificial neural networks
Computer Science
Control Structures and Microprogramming
Datasets
Neural networks
Software
Special libraries
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-LqKj14UsI2Tdo0J1nURRAWDwp7K3kVvOzqtvr7zaQt6wO9eGppSSiTafJNZvJ9AOfKQ4LcCixql4ZwbQ3RWjIipUVGM-Mhrg5iE2IyyadT-dBuuFVtWWU3J4aJ2s4N7pEPmY9kfDAihLh6eSWoGoXZ1VZCYxXWaJJQ9PN7QbqZOE3zoPSI_CiEU5o1WU1U1hpiUVOGzxIuEHbkX9elJdj8lh8Ny854-78fvANbLeCMRo2H7MKKm-3B5icawn1IbhymEvx9NKprPHQfhUqC0KhhmIiQxCNcQtV4dQBP49vH6zvSaikQQ2VeE-WRXGxiG4tMpVTo2I8dhoOyVDwus9hxraRjqTKppMYZzZ0VSH_GlI1Lbtgh9GbzmTuCiJUsK43hlhnGBffNPCZiqcysxzZ-ePtw0VmyeGkoMwofaqDZix9m78Ogs17R_j1VsTRdHy47-y9f_9rZ8d-dncBG4iFJU4wygF69eHOnsG7e6-dqcRZc5wMfE8aO
  priority: 102
  providerName: ProQuest
Title Detecting Attacks Using Artificial Neural Networks
URI https://link.springer.com/article/10.3103/S0146411624700858
https://www.proquest.com/docview/3254840777
Volume 58
WOSCitedRecordID wos001444845400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYxgEODAaI8Zh64ASKSJe0aY4DNiEhTdMGaOJStUkqcRloLfx-nLTVeB7g0laqG1VOHH-Wv9gApwlCgkgLS2qXivBUK5KmkhEpta1ophDipq7ZhBiPo_lcTqpz3HnNdq9Tkm6ndnElZReWhhRy3w_7XFigEDWghd4ustY4nT3U228QRK69o5UmVrxMZf48xGdntEKYX5KizteM2v_6y23YqqClNyjXwg6smUUH2nXbBq-y4g5sfqhBuAv9a2PzCPjsDYrCnrj3HI3AjVOWl_BsBQ93c5TxfA_uR8O7qxtSNVIgypdRQRKEcVRRTUWYBL5IKU6cjQVllnCahdTwNJGGBYkKpK-MSrnRwtY-Y4mmGVdsH5qL54U5AI9lLMyU4popxgXHzxAQsUCGGoENzm0XzmqNxi9lvYwY4wyrm_ibbrpwXOs8rkwnjxmGrBh1CiG6cF7rePX618EO_yR9BBt9hCclMeUYmsXy1ZzAunornvJlD1qXw_Fk2oPGrSA9ywed4XUSPPbcWnsHG-vGKw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT4NAEJ74StSDb2N9ctCLZlPKLix7MMb4iKbaeKhJbwi7S-KlrRY1_il_ozNLSX1Ebx48QSC7AWaY_T5m-AZgN0VIEBtJRe1KM5EZzbJMcaaUIUUzjRA3c80mZKsVdzrqZgzeqn9hqKyyiokuUJuepm_kdY5MBsmIlPKo_8CoaxRlV6sWGqVbNO3rC1K2weHlKdp3LwjOz9onF2zYVYBpJNgFSxHT-No3SODTsCEzH--CiJHKU-HnkW9FlirLw1SHqqGtzoQ1koTAeGr8XGiO847DpOCxJK3-pmRV5A_D2HWWJD0WJhqNqMyiUievOhVRRXQsEJJgTvx5HRyB2y_5WLfMnc__twe0AHNDQO0dl2_AIozZ7hLMfpBZXIbg1FKqBPe946IgUQHPVUq4QaWChkciJW7jquIHK3D7Jxe9ChPdXteugcdzHuVaC8M1F1LgMMR8PFSRQeyG7luD_cpySb-UBEmQSpGZk29mrsFmZa1kGB0GychUNTio7D06_eNk679PtgPTF-3rq-TqstXcgJkA4VdZeLMJE8Xjk92CKf1c3A8et53benD3127wDgPZJIs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujB-sRq1Rw8KaGb7iabPRZrUZRS8EFvIfsIeImlif5-dzYJ9XkQTwlkMoTZ3ez3MbPfAJylFhLEmmNRu1A-k1r5UgrqC6FR0UxZiCtdswk-HsfTqZjUfU6Lptq9SUlWZxpQpSkvezOd9RzHJLSHJUkRC4KozziChngZVhj2DEK6fv_U_IrDMHatHtHaR_Mqrfmzi88b0wJtfkmQun1n1P73F2_BZg05vUE1R7ZhyeQ70G7aOXj16t6BjQ_ahLvQHxrML9h7b1CWeBLfc-UFzk8lO-Ghsoe7uFLyYg8eR1cPl9d-3WDBV4GISz-18I4oogmP0jDgktgBRY4ospSRLCKGyVQYGqYqFIEySjKjOWqi0VSTjCm6D638JTcH4NGMRplSTFNFGWf2NQuUaCgibQGPHfMOnDfRTWaVjkZi-QfGJvkWmw50m_gn9ZIqEmqprGWjnPMOXDTxXjz-1dnhn6xPYW0yHCV3N-PbI1jvWwRT1a50oVXOX80xrKq38rmYn7iJ9g4u7c2R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Attacks+Using+Artificial+Neural+Networks&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Sikarev%2C+I.+A.&rft.au=Tatarnikova%2C+T.+M.&rft.date=2024-12-01&rft.pub=Pleiades+Publishing&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=58&rft.issue=8&rft.spage=1218&rft.epage=1225&rft_id=info:doi/10.3103%2FS0146411624700858&rft.externalDocID=10_3103_S0146411624700858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon