Detecting Attacks Using Artificial Neural Networks
The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural...
Uloženo v:
| Vydáno v: | Automatic control and computer sciences Ročník 58; číslo 8; s. 1218 - 1225 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.12.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0146-4116, 1558-108X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The developed neural network attack detection algorithm, whose peculiarity lies in the possibility of launching two parallel processes, is described: searching for the optimal model of an artificial neural network and normalization of the training sample data. It is shown that the artificial neural network architecture is selected taking into account the loss function for a limited set of attack classes. The application of TensorFlow and Keras Tuner libraries (frameworks) for the software implementation of an attack detection algorithm is shown. An experiment on the selection of neural network architecture and its training is described. The accuracy obtained in experiments is 94–98% for different classes of attacks. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0146-4116 1558-108X |
| DOI: | 10.3103/S0146411624700858 |