Two-stage submodular maximization problem beyond nonnegative and monotone

We consider a two-stage submodular maximization problem subject to a cardinality constraint and k matroid constraints, where the objective function is the expected difference of a nonnegative monotone submodular function and a nonnegative monotone modular function. We give two bi-factor approximatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical structures in computer science Ročník 34; číslo 3; s. 211 - 226
Hlavní autoři: Liu, Zhicheng, Chang, Hong, Ma, Ran, Du, Donglei, Zhang, Xiaoyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.03.2024
ISSN:0960-1295, 1469-8072
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a two-stage submodular maximization problem subject to a cardinality constraint and k matroid constraints, where the objective function is the expected difference of a nonnegative monotone submodular function and a nonnegative monotone modular function. We give two bi-factor approximation algorithms for this problem. The first is a deterministic $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}} \right),1} \right)$ -approximation algorithm, and the second is a randomized $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}} \right) - \varepsilon ,1} \right)$ -approximation algorithm with improved time efficiency.
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129521000372