Fast sequential and parallel algorithms for finding the largest rectangle separating two sets
Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (...
Uložené v:
| Vydané v: | International journal of computer mathematics Ročník 37; číslo 1-2; s. 49 - 61 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Gordon and Breach Science Publishers
01.01.1990
Taylor and Francis |
| Predmet: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (resp. set B) is much greater than that of set B (resp. set ,A). We present efficient sequential and parallel algorithms for these two problems. Our sequential algorithms run in O((n + m)log m + m
2
) and O((m+ n) log n + n
2
) time respectively. The parallel algorithms in CREW PRAM run in o(log n) ando(log m
2
) time using O(max(n,m
2
/logm)) and O(max(m,n
2
/logn)) processors respectively. Our sequential algorithms are faster than a previous algorithm under these constraints on cardinality. No previous parallel algorithm was known for this problem. We also present an optimal systolic algorithm for the original problem. |
|---|---|
| AbstractList | Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (resp. set B) is much greater than that of set B (resp. set ,A). We present efficient sequential and parallel algorithms for these two problems. Our sequential algorithms run in O((n + m)log m + m
2
) and O((m+ n) log n + n
2
) time respectively. The parallel algorithms in CREW PRAM run in o(log n) ando(log m
2
) time using O(max(n,m
2
/logm)) and O(max(m,n
2
/logn)) processors respectively. Our sequential algorithms are faster than a previous algorithm under these constraints on cardinality. No previous parallel algorithm was known for this problem. We also present an optimal systolic algorithm for the original problem. |
| Author | Srikant, R. Krithivasan, Kamala Datta, Amitava |
| Author_xml | – sequence: 1 givenname: Amitava surname: Datta fullname: Datta, Amitava organization: Department of Computer Science and Engineering , Indian Institute of Technology – sequence: 2 givenname: R. surname: Srikant fullname: Srikant, R. organization: Department of Computer Science and Engineering , Indian Institute of Technology – sequence: 3 givenname: Kamala surname: Krithivasan fullname: Krithivasan, Kamala organization: Department of Computer Science and Engineering , Indian Institute of Technology |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19632886$$DView record in Pascal Francis |
| BookMark | eNp1kMFKAzEQhoNUsK0-gLe9eFydJNvdDXiRYqtQ8KJHWWazyTaSZmsSKX17U6t4EE8zQ75vJvwTMnKDU4RcUrimUMMNAIOKlgKgroELXpyQMQUmcmDlbETGh_c8AXBGJiG8QeJEVY7J6wJDzIJ6_1AuGrQZui7bokdrVRpsP3gT15uQ6cFn2rjOuD6La5VZ9L1KqlcyouutSksOXvwCdkMaYzgnpxptUBffdUpeFvfP84d89bR8nN-tcknFLObpJ4oK2RagUytZ0dKC1a3QgtZYFqXUFFTFKs2LlrNCA6hWJIXP2qqj2PIpuTru3WKQaLVHJ01ott5s0O8bKkrO6rpMHD1y0g8heKV_EWgOOTZ_ckzO7dExLmWwwd3gbddE3NvB_xzi_-uffyV6ew |
| CODEN | IJCMAT |
| Cites_doi | 10.1525/9780520325265-016 10.1145/41958.41988 10.1137/0217049 10.1007/BF01553888 10.1016/0166-218X(86)90071-5 10.1137/0215022 10.1145/76359.76371 10.1109/TC.1985.6312202 10.1016/0166-218X(84)90124-0 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 1990 1991 INIST-CNRS |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 1990 – notice: 1991 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1080/00207169008803934 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1029-0265 |
| EndPage | 61 |
| ExternalDocumentID | 19632886 10_1080_00207169008803934 8803934 |
| GroupedDBID | -~X 07G 0R~ 1TA 4.4 5GY 5VS AAIKQ AAKBW AAYJJ ABEFU ABJNI ABUFD ACGEE ACGEJ ACGFS ACGOD ACIWK ACNCT ADCVX ADXPE AENEX AEPSL AEUMN AEYOC AFFNX AGLEN AI. ALMA_UNASSIGNED_HOLDINGS AMVHM AMXXU AQTUD AWYRJ BCCOT BPLKW C06 CS3 DU5 DWIFK EBS EJD H13 HZ~ IVXBP NA5 NUSFT NY~ O9- P2P PQQKQ TAQ TDBHL TFL TFMCV TFW TN5 TOXWX UB9 UPT UU8 V3K V4Q VH1 WH7 ZY4 .4S .7F .DC .QJ 0BK 29J 30N AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACTCW ACTIO ACUHS ADGTB AEISY AEOZL AFKVX AFRVT AGCQS AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AIYEW AJWEG AKBVH AKOOK ALCKM ALQZU AMEWO AQRUH ARCSS AVBZW BLEHA CAG CCCUG CE4 CITATION COF CRFIH DGEBU DKSSO DMQIW EAP EDO EMK EPL EST ESX E~A E~B GTTXZ HF~ H~9 H~P IPNFZ J.P KYCEM LJTGL M4Z MK~ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEJ TFT TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ ADYSH IQODW |
| ID | FETCH-LOGICAL-c195t-976e19cb40f976c24b1428b9f918a646cf10e727f34b324f00eb96e135b7d1ab3 |
| IEDL.DBID | TFW |
| ISSN | 0020-7160 |
| IngestDate | Mon Jul 21 09:15:40 EDT 2025 Sat Nov 29 02:21:22 EST 2025 Mon Oct 20 23:44:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Computational geometry Parallel algorithm Fast algorithm Algorithm analysis Algorithm complexity |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c195t-976e19cb40f976c24b1428b9f918a646cf10e727f34b324f00eb96e135b7d1ab3 |
| PageCount | 13 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_00207169008803934 crossref_primary_10_1080_00207169008803934 pascalfrancis_primary_19632886 |
| PublicationCentury | 1900 |
| PublicationDate | 1/1/1990 1990-01-00 1990 |
| PublicationDateYYYYMMDD | 1990-01-01 |
| PublicationDate_xml | – month: 01 year: 1990 text: 1/1/1990 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of computer mathematics |
| PublicationYear | 1990 |
| Publisher | Gordon and Breach Science Publishers Taylor and Francis |
| Publisher_xml | – name: Gordon and Breach Science Publishers – name: Taylor and Francis |
| References | Datta A.. (CIT0008) CIT0012 CIT0011 Kruskal C.P. (CIT0010) 1985; 34 Ullman J.D. (CIT0013) 1984 CIT0003 CIT0002 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 Aggarwal A. (CIT0001) 1989; 39 |
| References_xml | – ident: CIT0011 doi: 10.1525/9780520325265-016 – volume-title: Computational aspects of VLSI year: 1984 ident: CIT0013 – ident: CIT0002 doi: 10.1145/41958.41988 – ident: CIT0007 doi: 10.1137/0217049 – ident: CIT0004 doi: 10.1007/BF01553888 – ident: CIT0009 – ident: CIT0003 doi: 10.1016/0166-218X(86)90071-5 – ident: CIT0006 doi: 10.1137/0215022 – ident: CIT0005 doi: 10.1145/76359.76371 – volume: 34 start-page: 965 year: 1985 ident: CIT0010 publication-title: IEEE Trans. on Computers doi: 10.1109/TC.1985.6312202 – volume: 39 start-page: 388 year: 1989 ident: CIT0001 publication-title: EATCS Bulletin – ident: CIT0012 doi: 10.1016/0166-218X(84)90124-0 – ident: CIT0008 publication-title: Information Sciences |
| SSID | ssj0008976 |
| Score | 1.317347 |
| Snippet | Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing... |
| SourceID | pascalfrancis crossref informaworld |
| SourceType | Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | 1.3.5 [Computational Geometry and Object Modelling] Applied sciences Artificial intelligence B.7.1 [Very Large Scale Integration] C.1.1 [Single Data Stream Architcctures] Computational geometry Computer science; control theory; systems CREW PRAM Exact sciences and technology F.2.2 [Analysis of Algorithms and Problem Complexity] isothetic rectangles line sweep paradigm Pattern recognition. Digital image processing. Computational geometry systolic array |
| Title | Fast sequential and parallel algorithms for finding the largest rectangle separating two sets |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207169008803934 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1029-0265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008976 issn: 0020-7160 databaseCode: TFW dateStart: 19640101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yPHhxfuL8GDl4EgLJmqbJUcTiQYaHqbtISdpkDmona9V_35e2m5uIB70lkC_ey_tI8vJ7CJ0rZcHuKE0yQ0PCg8wQHSlKLBw2HAePltcvpg-30XAox2N118bmlG1YpT9DuwYootbVXri1KRcRcf4HN_UgL2C-pP9a6tFAwex7sRzFj0s9LFWdWs63JtB8-ab50whrVmkNs9QHS-oS6OWaRBcr1ifu_nPdO2i7dTvxZbNPdtGGLfZQd5HSAbcSvo-eYl1WuImvBtnPMUyGPTx4nluo5JPZfFo9v5QYlo7r9-5igsGHxLmPKIeuXoHqYpJbGKSBFfcNPmZQrcoDdB9fj65uSJuBgaRMhRUBClqmUsOpg2I64P7KSBrlFJNacJE6Ri14QC7gBjwzR6k1CroEoYkypk1wiDrFrLBHCAuRSZ2GXBijOTVcc6ABs0aLlIvQqB66WHAgeW2ANhK2xC_9RrgeCld5lFT17UbLoST4pV9_jZlfM4EeGkgpjv848AnaYmDXm7uZU9Sp5m_2DG2m79W0nPfrffkJTQrgTQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aBb1Yn1gfNQdPQiBxs2lyFHGpWIuHqr3IkmyztbBupbvq33eyu62tiAe9JZAXM8nMZDL5BqFTpSzoHaXJwFCfcG9giG4pSixcNmIOFi0vXkwfOq1uV_b76q5yuGVVWKW7Q8clUEQhq93hds7oaUic-8JNHcoL6C_p_pbyZbTig5512Pm94HEmiaUqksu55gTaz141fxpiQS8toJa6cEmdAcXiMtXFnP4J6v9d-SbaqCxPfFFulS20ZNNtVJ9mdcDVId9BT4HOclyGWMPxTzDMhh1CeJJYqCTD8WSUP79kGNaOiyfvdIjBjMSJCyqHrk6G6nSYWBikRBZ3DT7GUM2zXXQfXPUu26RKwkAipvycAAktU5HhNIZidM6d10gaFSsmteAiihm1YATFHjdgnMWUWqOgi-eb1oBp4-2hWjpO7T7CQgykjnwujNGcGq450IBZo0XEhW9UA51NWRC-llgbIZtBmH4jXAP580wK88LBUbEo9H7p11zg5tdMIIrOpRQHfxz4BK21e7edsHPdvTlE6wzUfOmqOUK1fPJmj9Fq9J6Pskmz2KSfhubkdw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuL8mHnwSSgka5o1j6IWxTH2MHUvUpI2mYPajbXqv--l7eYm4oO-JZAv7pK7y-XyO4TOhdCgd4R0YkU8h7mxcmRbEEfDZcMwsGhZ8WL62Gl3u_5gIHpVbE5WhVXaO7QpgSIKWW0P9yQ2s4g4-4ObWJAXUF--_VrKVtEamM3cbvB-8DQXxL4ocsvZ5g60nz9q_jTEklpaAi210ZIyA4KZMtPFgvoJ6v9c-DbaquxOfFlulB20otNdVJ_ldMDVEd9Dz4HMclwGWMPhTzBMhi0-eJJoqCTD8XSUv7xmGJaOiwfvdIjBiMSJDSmHrlaCynSYaBikxBW3DT7GUM2zffQQ3PSvbp0qBYMTUeHlDlBQUxEpRgwUoxazPiNfCSOoLznjkaFEgwlkXKbANDOEaCWgi-updkylcg9QLR2n-hBhzmNfRh7jSklGFJMMaEC1kjxi3FOigS5mHAgnJdJGSOcApt8I10DeIo_CvHBvVBwK3V_6NZeY-TUTCKKW7_OjPw58hjZ610HYueveH6NNCjq-9NOcoFo-fdOnaD16z0fZtFls0U_vG-Mp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+sequential+and+parallel+algorithms+for+finding+the+largest+rectangle+separating+two+sets&rft.jtitle=International+journal+of+computer+mathematics&rft.au=AMITAVA+DATTA&rft.au=SRIKANT%2C+R&rft.au=KAMALA+KRITHIVASAN&rft.date=1990&rft.pub=Taylor+and+Francis&rft.issn=0020-7160&rft.volume=37&rft.issue=1-2&rft.spage=49&rft.epage=61&rft_id=info:doi/10.1080%2F00207169008803934&rft.externalDBID=n%2Fa&rft.externalDocID=19632886 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |