Fast sequential and parallel algorithms for finding the largest rectangle separating two sets

Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 37; číslo 1-2; s. 49 - 61
Hlavní autori: Datta, Amitava, Srikant, R., Krithivasan, Kamala
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Gordon and Breach Science Publishers 01.01.1990
Taylor and Francis
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (resp. set B) is much greater than that of set B (resp. set ,A). We present efficient sequential and parallel algorithms for these two problems. Our sequential algorithms run in O((n + m)log m + m 2 ) and O((m+ n) log n + n 2 ) time respectively. The parallel algorithms in CREW PRAM run in o(log n) ando(log m 2 ) time using O(max(n,m 2 /logm)) and O(max(m,n 2 /logn)) processors respectively. Our sequential algorithms are faster than a previous algorithm under these constraints on cardinality. No previous parallel algorithm was known for this problem. We also present an optimal systolic algorithm for the original problem.
AbstractList Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (resp. set B) is much greater than that of set B (resp. set ,A). We present efficient sequential and parallel algorithms for these two problems. Our sequential algorithms run in O((n + m)log m + m 2 ) and O((m+ n) log n + n 2 ) time respectively. The parallel algorithms in CREW PRAM run in o(log n) ando(log m 2 ) time using O(max(n,m 2 /logm)) and O(max(m,n 2 /logn)) processors respectively. Our sequential algorithms are faster than a previous algorithm under these constraints on cardinality. No previous parallel algorithm was known for this problem. We also present an optimal systolic algorithm for the original problem.
Author Srikant, R.
Krithivasan, Kamala
Datta, Amitava
Author_xml – sequence: 1
  givenname: Amitava
  surname: Datta
  fullname: Datta, Amitava
  organization: Department of Computer Science and Engineering , Indian Institute of Technology
– sequence: 2
  givenname: R.
  surname: Srikant
  fullname: Srikant, R.
  organization: Department of Computer Science and Engineering , Indian Institute of Technology
– sequence: 3
  givenname: Kamala
  surname: Krithivasan
  fullname: Krithivasan, Kamala
  organization: Department of Computer Science and Engineering , Indian Institute of Technology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19632886$$DView record in Pascal Francis
BookMark eNp1kMFKAzEQhoNUsK0-gLe9eFydJNvdDXiRYqtQ8KJHWWazyTaSZmsSKX17U6t4EE8zQ75vJvwTMnKDU4RcUrimUMMNAIOKlgKgroELXpyQMQUmcmDlbETGh_c8AXBGJiG8QeJEVY7J6wJDzIJ6_1AuGrQZui7bokdrVRpsP3gT15uQ6cFn2rjOuD6La5VZ9L1KqlcyouutSksOXvwCdkMaYzgnpxptUBffdUpeFvfP84d89bR8nN-tcknFLObpJ4oK2RagUytZ0dKC1a3QgtZYFqXUFFTFKs2LlrNCA6hWJIXP2qqj2PIpuTru3WKQaLVHJ01ott5s0O8bKkrO6rpMHD1y0g8heKV_EWgOOTZ_ckzO7dExLmWwwd3gbddE3NvB_xzi_-uffyV6ew
CODEN IJCMAT
Cites_doi 10.1525/9780520325265-016
10.1145/41958.41988
10.1137/0217049
10.1007/BF01553888
10.1016/0166-218X(86)90071-5
10.1137/0215022
10.1145/76359.76371
10.1109/TC.1985.6312202
10.1016/0166-218X(84)90124-0
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1990
1991 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1990
– notice: 1991 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/00207169008803934
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1029-0265
EndPage 61
ExternalDocumentID 19632886
10_1080_00207169008803934
8803934
GroupedDBID -~X
07G
0R~
1TA
4.4
5GY
5VS
AAIKQ
AAKBW
AAYJJ
ABEFU
ABJNI
ABUFD
ACGEE
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ADCVX
ADXPE
AENEX
AEPSL
AEUMN
AEYOC
AFFNX
AGLEN
AI.
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AMXXU
AQTUD
AWYRJ
BCCOT
BPLKW
C06
CS3
DU5
DWIFK
EBS
EJD
H13
HZ~
IVXBP
NA5
NUSFT
NY~
O9-
P2P
PQQKQ
TAQ
TDBHL
TFL
TFMCV
TFW
TN5
TOXWX
UB9
UPT
UU8
V3K
V4Q
VH1
WH7
ZY4
.4S
.7F
.DC
.QJ
0BK
29J
30N
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACTCW
ACTIO
ACUHS
ADGTB
AEISY
AEOZL
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALQZU
AMEWO
AQRUH
ARCSS
AVBZW
BLEHA
CAG
CCCUG
CE4
CITATION
COF
CRFIH
DGEBU
DKSSO
DMQIW
EAP
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
HF~
H~9
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEJ
TFT
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
ADYSH
IQODW
ID FETCH-LOGICAL-c195t-976e19cb40f976c24b1428b9f918a646cf10e727f34b324f00eb96e135b7d1ab3
IEDL.DBID TFW
ISSN 0020-7160
IngestDate Mon Jul 21 09:15:40 EDT 2025
Sat Nov 29 02:21:22 EST 2025
Mon Oct 20 23:44:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Computational geometry
Parallel algorithm
Fast algorithm
Algorithm analysis
Algorithm complexity
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c195t-976e19cb40f976c24b1428b9f918a646cf10e727f34b324f00eb96e135b7d1ab3
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_00207169008803934
crossref_primary_10_1080_00207169008803934
pascalfrancis_primary_19632886
PublicationCentury 1900
PublicationDate 1/1/1990
1990-01-00
1990
PublicationDateYYYYMMDD 1990-01-01
PublicationDate_xml – month: 01
  year: 1990
  text: 1/1/1990
  day: 01
PublicationDecade 1990
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 1990
Publisher Gordon and Breach Science Publishers
Taylor and Francis
Publisher_xml – name: Gordon and Breach Science Publishers
– name: Taylor and Francis
References Datta A.. (CIT0008)
CIT0012
CIT0011
Kruskal C.P. (CIT0010) 1985; 34
Ullman J.D. (CIT0013) 1984
CIT0003
CIT0002
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
Aggarwal A. (CIT0001) 1989; 39
References_xml – ident: CIT0011
  doi: 10.1525/9780520325265-016
– volume-title: Computational aspects of VLSI
  year: 1984
  ident: CIT0013
– ident: CIT0002
  doi: 10.1145/41958.41988
– ident: CIT0007
  doi: 10.1137/0217049
– ident: CIT0004
  doi: 10.1007/BF01553888
– ident: CIT0009
– ident: CIT0003
  doi: 10.1016/0166-218X(86)90071-5
– ident: CIT0006
  doi: 10.1137/0215022
– ident: CIT0005
  doi: 10.1145/76359.76371
– volume: 34
  start-page: 965
  year: 1985
  ident: CIT0010
  publication-title: IEEE Trans. on Computers
  doi: 10.1109/TC.1985.6312202
– volume: 39
  start-page: 388
  year: 1989
  ident: CIT0001
  publication-title: EATCS Bulletin
– ident: CIT0012
  doi: 10.1016/0166-218X(84)90124-0
– ident: CIT0008
  publication-title: Information Sciences
SSID ssj0008976
Score 1.317347
Snippet Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Publisher
StartPage 49
SubjectTerms 1.3.5 [Computational Geometry and Object Modelling]
Applied sciences
Artificial intelligence
B.7.1 [Very Large Scale Integration]
C.1.1 [Single Data Stream Architcctures]
Computational geometry
Computer science; control theory; systems
CREW PRAM
Exact sciences and technology
F.2.2 [Analysis of Algorithms and Problem Complexity]
isothetic rectangles
line sweep paradigm
Pattern recognition. Digital image processing. Computational geometry
systolic array
Title Fast sequential and parallel algorithms for finding the largest rectangle separating two sets
URI https://www.tandfonline.com/doi/abs/10.1080/00207169008803934
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yPHhxfuL8GDl4EgLJmqbJUcTiQYaHqbtISdpkDmona9V_35e2m5uIB70lkC_ey_tI8vJ7CJ0rZcHuKE0yQ0PCg8wQHSlKLBw2HAePltcvpg-30XAox2N118bmlG1YpT9DuwYootbVXri1KRcRcf4HN_UgL2C-pP9a6tFAwex7sRzFj0s9LFWdWs63JtB8-ab50whrVmkNs9QHS-oS6OWaRBcr1ifu_nPdO2i7dTvxZbNPdtGGLfZQd5HSAbcSvo-eYl1WuImvBtnPMUyGPTx4nluo5JPZfFo9v5QYlo7r9-5igsGHxLmPKIeuXoHqYpJbGKSBFfcNPmZQrcoDdB9fj65uSJuBgaRMhRUBClqmUsOpg2I64P7KSBrlFJNacJE6Ri14QC7gBjwzR6k1CroEoYkypk1wiDrFrLBHCAuRSZ2GXBijOTVcc6ABs0aLlIvQqB66WHAgeW2ANhK2xC_9RrgeCld5lFT17UbLoST4pV9_jZlfM4EeGkgpjv848AnaYmDXm7uZU9Sp5m_2DG2m79W0nPfrffkJTQrgTQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aBb1Yn1gfNQdPQiBxs2lyFHGpWIuHqr3IkmyztbBupbvq33eyu62tiAe9JZAXM8nMZDL5BqFTpSzoHaXJwFCfcG9giG4pSixcNmIOFi0vXkwfOq1uV_b76q5yuGVVWKW7Q8clUEQhq93hds7oaUic-8JNHcoL6C_p_pbyZbTig5512Pm94HEmiaUqksu55gTaz141fxpiQS8toJa6cEmdAcXiMtXFnP4J6v9d-SbaqCxPfFFulS20ZNNtVJ9mdcDVId9BT4HOclyGWMPxTzDMhh1CeJJYqCTD8WSUP79kGNaOiyfvdIjBjMSJCyqHrk6G6nSYWBikRBZ3DT7GUM2zXXQfXPUu26RKwkAipvycAAktU5HhNIZidM6d10gaFSsmteAiihm1YATFHjdgnMWUWqOgi-eb1oBp4-2hWjpO7T7CQgykjnwujNGcGq450IBZo0XEhW9UA51NWRC-llgbIZtBmH4jXAP580wK88LBUbEo9H7p11zg5tdMIIrOpRQHfxz4BK21e7edsHPdvTlE6wzUfOmqOUK1fPJmj9Fq9J6Pskmz2KSfhubkdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuL8mHnwSSgka5o1j6IWxTH2MHUvUpI2mYPajbXqv--l7eYm4oO-JZAv7pK7y-XyO4TOhdCgd4R0YkU8h7mxcmRbEEfDZcMwsGhZ8WL62Gl3u_5gIHpVbE5WhVXaO7QpgSIKWW0P9yQ2s4g4-4ObWJAXUF--_VrKVtEamM3cbvB-8DQXxL4ocsvZ5g60nz9q_jTEklpaAi210ZIyA4KZMtPFgvoJ6v9c-DbaquxOfFlulB20otNdVJ_ldMDVEd9Dz4HMclwGWMPhTzBMhi0-eJJoqCTD8XSUv7xmGJaOiwfvdIjBiMSJDSmHrlaCynSYaBikxBW3DT7GUM2zffQQ3PSvbp0qBYMTUeHlDlBQUxEpRgwUoxazPiNfCSOoLznjkaFEgwlkXKbANDOEaCWgi-updkylcg9QLR2n-hBhzmNfRh7jSklGFJMMaEC1kjxi3FOigS5mHAgnJdJGSOcApt8I10DeIo_CvHBvVBwK3V_6NZeY-TUTCKKW7_OjPw58hjZ610HYueveH6NNCjq-9NOcoFo-fdOnaD16z0fZtFls0U_vG-Mp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+sequential+and+parallel+algorithms+for+finding+the+largest+rectangle+separating+two+sets&rft.jtitle=International+journal+of+computer+mathematics&rft.au=AMITAVA+DATTA&rft.au=SRIKANT%2C+R&rft.au=KAMALA+KRITHIVASAN&rft.date=1990&rft.pub=Taylor+and+Francis&rft.issn=0020-7160&rft.volume=37&rft.issue=1-2&rft.spage=49&rft.epage=61&rft_id=info:doi/10.1080%2F00207169008803934&rft.externalDBID=n%2Fa&rft.externalDocID=19632886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon