Fast sequential and parallel algorithms for finding the largest rectangle separating two sets

Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 37; číslo 1-2; s. 49 - 61
Hlavní autoři: Datta, Amitava, Srikant, R., Krithivasan, Kamala
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Gordon and Breach Science Publishers 01.01.1990
Taylor and Francis
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a bounding isothetic rectangle BR and two sets of points A and B with cardinalities n and m inside it, we have to find an isothetic rectangle containing maximum number of points from set A and no point from set B. We consider two limiting cases of this problem when the cardinalities of set A (resp. set B) is much greater than that of set B (resp. set ,A). We present efficient sequential and parallel algorithms for these two problems. Our sequential algorithms run in O((n + m)log m + m 2 ) and O((m+ n) log n + n 2 ) time respectively. The parallel algorithms in CREW PRAM run in o(log n) ando(log m 2 ) time using O(max(n,m 2 /logm)) and O(max(m,n 2 /logn)) processors respectively. Our sequential algorithms are faster than a previous algorithm under these constraints on cardinality. No previous parallel algorithm was known for this problem. We also present an optimal systolic algorithm for the original problem.
ISSN:0020-7160
1029-0265
DOI:10.1080/00207169008803934