A spark-based parallel distributed posterior decoding algorithm for big data hidden Markov models decoding problem

Hidden  M arkov models (HMMs) are one of machine learning algorithms which have been widely used and demonstrated their efficiency in many conventional applications. This paper proposes a modified posterior decoding algorithm to solve hidden Markov models decoding problem based on MapReduce paradigm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IAES International Journal of Artificial Intelligence Ročník 10; číslo 3; s. 789
Hlavní autoři: Sassi, Imad, Anter, Samir, Bekkhoucha, Abdelkrim
Médium: Journal Article
Jazyk:angličtina
Vydáno: Yogyakarta IAES Institute of Advanced Engineering and Science 01.09.2021
Témata:
ISSN:2089-4872, 2252-8938, 2089-4872
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Hidden  M arkov models (HMMs) are one of machine learning algorithms which have been widely used and demonstrated their efficiency in many conventional applications. This paper proposes a modified posterior decoding algorithm to solve hidden Markov models decoding problem based on MapReduce paradigm and spark’s resilient distributed dataset (RDDs) concept, for large-scale data processing. The objective of this work is to improve the performances of HMM to deal with big data challenges. The proposed algorithm shows a great improvement in reducing time complexity and provides good results in terms of running time, speedup, and parallelization efficiency for a large amount of data, i.e., large states number and large sequences number.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2089-4872
2252-8938
2089-4872
DOI:10.11591/ijai.v10.i3.pp789-800