Sparse Array Optimization Based on Modified Particle Swarm Optimization and Orthogonal Matching Pursuit

This paper addresses the low degree of freedom in optimization, primarily attributed to the conventional antenna array optimization methods that solely focus on the optimization of element positions, without considering the influence of element excitations. To address this issue, a sparse array opti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Computational Electromagnetics Society journal Ročník 40; číslo 6; s. 508
Hlavní autoři: Li, Daren, Guo, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Pisa River Publishers 30.06.2025
Témata:
ISSN:1054-4887, 1943-5711
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addresses the low degree of freedom in optimization, primarily attributed to the conventional antenna array optimization methods that solely focus on the optimization of element positions, without considering the influence of element excitations. To address this issue, a sparse array optimization method is proposed based on modified Particle Swarm Optimization (PSO) algorithm and Orthogonal Matching Pursuit (OMP). This method simultaneously optimizes both the element positions and excitations to achieve the desired pattern. Initially, the compressive sensing principle is employed to establish a compressive sensing optimization model for the antenna array. Subsequently, OMP is utilized to simultaneously optimize the element positions and excitations within the antenna array. An improved PSO algorithm is then applied to iteratively update the obtained parameters, thereby further enhancing the peak sidelobe level. Experimental results demonstrate that the proposed algorithm can achieve satisfactory optimization performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1054-4887
1943-5711
DOI:10.13052/2024.ACES.J.400603