Optimizing a Linearly Constrained Quadratic Programming Problem Using Eigen-Value Decomposition and Resultant Vector Ascent Method

This paper suggests an iterative method for optimizing a Quadratic Programming Problem, constrained with a set of Linear Inequalities (less than type), regardless of the nature of the square matrix ( B ) within the objective function. To reach the global solution the entire travel is devised with a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of applied and computational mathematics Ročník 11; číslo 6; s. 231
Hlavný autor: Sarkar, Subhadip
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New Delhi Springer India 01.12.2025
Springer Nature B.V
Predmet:
ISSN:2349-5103, 2199-5796
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper suggests an iterative method for optimizing a Quadratic Programming Problem, constrained with a set of Linear Inequalities (less than type), regardless of the nature of the square matrix ( B ) within the objective function. To reach the global solution the entire travel is devised with a set of specially designed ( n – m ) (>  m ) vectors while incorporating a Resultant Vector Ascent Method (where  n  and  m represent the number of variables (including slack variables) and constraints). These vectors are located in the null space of the constraint matrix and half of them are dependent on the Eigenvectors of B . The prescribed movements can optimize the problem with a time complexity of and without causing a looping problem during degeneracy .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2349-5103
2199-5796
DOI:10.1007/s40819-025-02048-9