A generalization of André-Jeannin’s symmetric identity

In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers , defined by a three-term recurrence = with constant coefficients. In this paper, we extend this identity to sequences satisfying a three-term recurrence = + with arbitrary coefficients. Then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure mathematics and applications Jg. 27; H. 1; S. 98 - 118
1. Verfasser: Munarini, Emanuele
Format: Journal Article
Sprache:Englisch
Ungarisch
Veröffentlicht: Firenze Sciendo 01.07.2018
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Schlagworte:
ISSN:1788-800X, 1788-800X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers , defined by a three-term recurrence = with constant coefficients. In this paper, we extend this identity to sequences satisfying a three-term recurrence = + with arbitrary coefficients. Then, we specialize such an identity to several -polynomials of combinatorial interest, such as the -Fibonacci, -Lucas, -Pell, -Jacobsthal, -Chebyshev and -Morgan-Voyce polynomials.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1788-800X
1788-800X
DOI:10.1515/puma-2015-0028