A generalization of André-Jeannin’s symmetric identity

In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers , defined by a three-term recurrence = with constant coefficients. In this paper, we extend this identity to sequences satisfying a three-term recurrence = + with arbitrary coefficients. Then...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pure mathematics and applications Ročník 27; číslo 1; s. 98 - 118
Hlavní autor: Munarini, Emanuele
Médium: Journal Article
Jazyk:angličtina
maďarština
Vydáno: Firenze Sciendo 01.07.2018
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1788-800X, 1788-800X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers , defined by a three-term recurrence = with constant coefficients. In this paper, we extend this identity to sequences satisfying a three-term recurrence = + with arbitrary coefficients. Then, we specialize such an identity to several -polynomials of combinatorial interest, such as the -Fibonacci, -Lucas, -Pell, -Jacobsthal, -Chebyshev and -Morgan-Voyce polynomials.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1788-800X
1788-800X
DOI:10.1515/puma-2015-0028