Joint subcarrier assignment and power allocation for UAV-assisted air-ground integrated full-duplex OFDMA networks

The self-interference caused by simultaneous uplink and downlink transmissions, along with inter-cell co-channel interference, significantly challenges the benefits of full-duplex transmission in future multi-UAV assisted Air-Ground Integrated OFDMA Networks. Effective resource allocation is crucial...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Vehicular Communications Ročník 53; s. 100907
Hlavní autor: Wang, Tong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2025
Témata:
ISSN:2214-2096
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The self-interference caused by simultaneous uplink and downlink transmissions, along with inter-cell co-channel interference, significantly challenges the benefits of full-duplex transmission in future multi-UAV assisted Air-Ground Integrated OFDMA Networks. Effective resource allocation is crucial for achieving high system performance in these complex full-duplex environments. This paper investigates the joint optimization of subcarrier scheduling and power assignment, a task complicated by nonconvex Quality of Service (QoS) constraints, the nonconvex nature of the objective function, and the combinatorial intricacies of subcarrier scheduling. To overcome these difficulties, we first propose a Time-Sharing Greedy Rounding algorithm (TS-GR) based on the alternating optimization (AO) method. To further enhance the solution quality, we also propose an lp-norm regularization-based algorithm (LP-NR). Extensive simulation results and theoretical analyses confirm the convergence and efficiency of our proposed methods in UAV-assisted full-duplex OFDMA networks. The simulations highlight that while TS-GR can achieve higher rates under relaxed QoS requirements, LP-NR offers robust performance by consistently satisfying both uplink and downlink QoS requirements. Our findings demonstrate that the gains of multi-cell full-duplex wireless networks over their half-duplex counterparts are significant under optimal conditions but can be constrained by high self-interference and noise levels.
ISSN:2214-2096
DOI:10.1016/j.vehcom.2025.100907