M2M-Net: multi-objective neural architecture search using dynamic M2M population decomposition

Evolutionary multi-objective neural architecture search (MO-NAS) is an efficient solution for automating the design of deep neural network architectures, aiming to explore a diverse range of objectives. However, the sensitivity of objectives in MO-NAS varies over generations, leading to a search imb...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 27; s. 22473 - 22491
Hlavní autoři: Tan, Zhiwen, Guo, Daqi, Chen, Junan, Chen, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.09.2025
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Evolutionary multi-objective neural architecture search (MO-NAS) is an efficient solution for automating the design of deep neural network architectures, aiming to explore a diverse range of objectives. However, the sensitivity of objectives in MO-NAS varies over generations, leading to a search imbalance, and local search plays a crucial role in this combinatorial optimization problem with a discrete search space. In this paper, we propose M2M-Net, a dynamic self-adaptive (Multi-objective to Multi-objective) M2M population decomposition-based evolutionary algorithm for NAS. M2M-Net leverages dynamic self-adaptive M2M population decomposition to overcome the search imbalance in MO-NAS. The subpopulation-based search within M2M-Net facilitates local search through crossover and mutation. Additionally, M2M-Net incorporates a proxy model to reduce computational cost in architecture evaluation and utilizes the channel attention mechanism to improve the accuracy of proxy model evaluation. Experimental studies on CIFAR-10 and CIFAR-100 datasets validate the effectiveness and efficiency of M2M-Net. Comparisons and analysis demonstrate that M2M-Net achieves comparable performance to state-of-the-art NAS methods while utilizing fewer computational resources.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-024-10595-3