Multi‐Objective Workflow Scheduling in Cloud Using Archimedes Optimization Algorithm

ABSTRACT Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for. Consequently, there has been a significant spike in the demand for improved algorithms to schedule workflows efficiently. These were mostl...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 37; no. 4-5
Main Authors: Kushwaha, Shweta, Shankar Singh, Ravi, Prajapati, Kanika
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 28.02.2025
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for. Consequently, there has been a significant spike in the demand for improved algorithms to schedule workflows efficiently. These were mostly concerned with heuristic, metaheuristic, and hybrid approaches to workflow scheduling that mostly suffer from the problem of local optima entrapment. Due to such heavy traffic on the cloud resources, there is still a need for less computationally complex approaches. In light of this, this article proposes a novel approach: a multi‐objective Modified Local Escaping Archimedes Optimization (MLEAO) algorithm for workflow scheduling. This strategy involves initialization of the population of Archimedes Optimization algorithm through the HEFT algorithm to provide an inclination towards the solutions with improved makespan while achieving a cost‐efficient workflow scheduling decision and avoiding the problem of local optima entrapment using a local escaping operation. To validate the efficacy of our approach, we conducted extensive experiments using scientific workflows as benchmarks. Through our investigations, we significantly improved makespan, cost, resource utilization, and energy consumption. Moreover, the effectiveness of our proposed approach is also verified by performance metrics such as hypervolume, s‐metric, and dominance relationships between the proposed and state‐of‐the‐art approaches.
AbstractList Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for. Consequently, there has been a significant spike in the demand for improved algorithms to schedule workflows efficiently. These were mostly concerned with heuristic, metaheuristic, and hybrid approaches to workflow scheduling that mostly suffer from the problem of local optima entrapment. Due to such heavy traffic on the cloud resources, there is still a need for less computationally complex approaches. In light of this, this article proposes a novel approach: a multi‐objective Modified Local Escaping Archimedes Optimization (MLEAO) algorithm for workflow scheduling. This strategy involves initialization of the population of Archimedes Optimization algorithm through the HEFT algorithm to provide an inclination towards the solutions with improved makespan while achieving a cost‐efficient workflow scheduling decision and avoiding the problem of local optima entrapment using a local escaping operation. To validate the efficacy of our approach, we conducted extensive experiments using scientific workflows as benchmarks. Through our investigations, we significantly improved makespan, cost, resource utilization, and energy consumption. Moreover, the effectiveness of our proposed approach is also verified by performance metrics such as hypervolume, s‐metric, and dominance relationships between the proposed and state‐of‐the‐art approaches.
ABSTRACT Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for. Consequently, there has been a significant spike in the demand for improved algorithms to schedule workflows efficiently. These were mostly concerned with heuristic, metaheuristic, and hybrid approaches to workflow scheduling that mostly suffer from the problem of local optima entrapment. Due to such heavy traffic on the cloud resources, there is still a need for less computationally complex approaches. In light of this, this article proposes a novel approach: a multi‐objective Modified Local Escaping Archimedes Optimization (MLEAO) algorithm for workflow scheduling. This strategy involves initialization of the population of Archimedes Optimization algorithm through the HEFT algorithm to provide an inclination towards the solutions with improved makespan while achieving a cost‐efficient workflow scheduling decision and avoiding the problem of local optima entrapment using a local escaping operation. To validate the efficacy of our approach, we conducted extensive experiments using scientific workflows as benchmarks. Through our investigations, we significantly improved makespan, cost, resource utilization, and energy consumption. Moreover, the effectiveness of our proposed approach is also verified by performance metrics such as hypervolume, s‐metric, and dominance relationships between the proposed and state‐of‐the‐art approaches.
Author Shankar Singh, Ravi
Prajapati, Kanika
Kushwaha, Shweta
Author_xml – sequence: 1
  givenname: Shweta
  surname: Kushwaha
  fullname: Kushwaha, Shweta
  email: shwetakushwaha.rs.cse21@iitbhu.ac.in
  organization: Indian Institute of Technology (BHU)
– sequence: 2
  givenname: Ravi
  surname: Shankar Singh
  fullname: Shankar Singh, Ravi
  organization: Indian Institute of Technology (BHU)
– sequence: 3
  givenname: Kanika
  surname: Prajapati
  fullname: Prajapati, Kanika
  organization: Indian Institute of Technology (BHU)
BookMark eNp10N9KwzAUBvAgCm5T8BEK3njTmTRt01yOMv_AZIJOL0OTnm6ZbVOT1jGvfASf0Sexc-KdV-cc-PEd-IbosDY1IHRG8JhgHFyqBsYJ5fQADUhEAx_HNDz824P4GA2dW2NMCKZkgJ7uurLVXx-fc7kG1eo38J6NfSlKs_Ee1AryrtT10tO1l5amy72F250Tq1a6ghycN29aXen3rNWm9ibl0ljdrqoTdFRkpYPT3zlCi6vpY3rjz-bXt-lk5iuShNTnBQeZx0nCAUdSMmBAOFcFkywAEsVccilVoCQNApLxsGCcMpIpFspcEiB0hM73uY01rx24VqxNZ-v-paCEhYQyHIW9utgrZY1zFgrRWF1ldisIFrvWRN-a2LXWU39PN7qE7b9OpPfTH_8NDb5xPA
Cites_doi 10.1007/s00607-021-01030-9
10.1109/TII.2022.3148288
10.1109/TCC.2014.2314655
10.1109/JSYST.2019.2960088
10.1007/s11227-022-04539-8
10.1109/TNSM.2021.3125395
10.1155/2018/1934784
10.1007/s10586-024-04396-5
10.1109/TPDS.2021.3134247
10.1002/cpe.6922
10.1016/j.simpat.2021.102323
10.1109/TSUSC.2023.3314759
10.1155/2006/271608
10.1016/j.ins.2020.06.037
10.1109/TSMC.2018.2881018
10.1002/cpe.1708
10.1145/3325097
10.1016/j.future.2012.08.015
10.1016/j.future.2020.01.038
10.1016/j.parco.2013.06.003
10.1007/s12083-023-01541-6
10.1109/TSC.2022.3174112
10.1007/s41870-024-01881-3
10.1007/s11227-023-05753-8
10.1109/ACCTHPA49271.2020.9213198
10.3390/app8040538
10.1016/j.swevo.2023.101291
10.1016/j.swevo.2016.12.005
10.1007/s11277-021-08263-z
10.1007/s10489-020-01893-z
10.1016/j.eswa.2020.114230
10.1007/s11227-021-03810-8
10.1016/j.jestch.2019.03.009
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.8393
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_8393
CPE8393
Genre researchArticle
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
LH4
O8X
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1843-9f9ebd6889e05bb7e7e199cf7b72e1569b9bbc2cb3221a94f79371ac74bdb1e13
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001417240100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Wed Aug 13 09:58:25 EDT 2025
Sat Nov 29 07:52:21 EST 2025
Thu Mar 06 09:30:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4-5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1843-9f9ebd6889e05bb7e7e199cf7b72e1569b9bbc2cb3221a94f79371ac74bdb1e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3174137054
PQPubID 2045170
PageCount 19
ParticipantIDs proquest_journals_3174137054
crossref_primary_10_1002_cpe_8393
wiley_primary_10_1002_cpe_8393_CPE8393
PublicationCentury 2000
PublicationDate 28 February 2025
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 28 February 2025
  day: 28
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 29
2023; 78
2021; 168
2019; 52
2023; 16
2024; 80
2023; 9
2006; 14
2020; 106
2020; 14
2020; 540
2020; 10
2024; 16
2021; 51
2018; 8
2018; 2018
2013; 39
2021; 33
2014; 2
2020
2021; 18
2017; 33
2021; 119
2022; 34
2022; 78
2011; 23
2018; 51
2020; 23
2021; 110
2022; 128
2024; 27
2022; 104
2022; 16
2022; 18
e_1_2_9_30_1
Sun Z. (e_1_2_9_20_1) 2022; 16
e_1_2_9_31_1
e_1_2_9_11_1
Pham T. P. (e_1_2_9_14_1) 2020; 10
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Nabi S. (e_1_2_9_28_1) 2022; 78
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
Singh S. (e_1_2_9_16_1) 2022; 128
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 23
  start-page: 1261
  issue: 11
  year: 2011
  end-page: 1283
  article-title: Dataflow Detection and Applications to Workflow Scheduling
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 23
  start-page: 211
  issue: 1
  year: 2020
  end-page: 224
  article-title: HIGA: Harmony‐Inspired Genetic Algorithm for Rack‐Aware Energy‐Efficient Task Scheduling in Cloud Data Centers
  publication-title: Engineering Science and Technology, an International Journal
– volume: 80
  start-page: 7750
  issue: 6
  year: 2024
  end-page: 7780
  article-title: PCP–ACO: A Hybrid Deadline‐Constrained Workflow Scheduling Algorithm for Cloud Environment
  publication-title: Journal of Supercomputing
– start-page: 107
  year: 2020
  end-page: 110
– volume: 106
  start-page: 595
  year: 2020
  end-page: 606
  article-title: Shared Data‐Aware Dynamic Resource Provisioning and Task Scheduling for Data Intensive Applications on Hybrid Clouds Using Aneka
  publication-title: Future Generation Computer Systems
– volume: 128
  start-page: 1
  year: 2022
  end-page: 22
  article-title: Energy Efficient Optimization With Threshold Based Workflow Scheduling and Virtual Machine Consolidation in Cloud Environment
  publication-title: Wireless Personal Communications
– volume: 2018
  issue: 1
  year: 2018
  article-title: Workflow Scheduling Using Hybrid GA‐PSO Algorithm in Cloud Computing
  publication-title: Wireless Communications and Mobile Computing
– volume: 18
  start-page: 4002
  issue: 4
  year: 2021
  end-page: 4018
  article-title: Real‐Time Multiple‐Workflow Scheduling in Cloud Environments
  publication-title: IEEE Transactions on Network and Service Management
– volume: 16
  start-page: 1
  year: 2024
  end-page: 8
  article-title: Scientific Workflow Scheduling Using Adaptive Dingo Optimization in Multi‐Cloud Environment
  publication-title: International Journal of Information Technology
– volume: 51
  start-page: 634
  issue: 1
  year: 2018
  end-page: 649
  article-title: An Intelligent Cloud Workflow Scheduling System With Time Estimation and Adaptive Ant Colony Optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 10
  start-page: 1780
  year: 2020
  end-page: 1791
  article-title: Evolutionary Multi‐Objective Workflow Scheduling for Volatile Resources in the Cloud.
  publication-title: Computing
– volume: 78
  year: 2023
  article-title: A Dynamic Multipopulation Genetic Algorithm for Multiobjective Workflow Scheduling Based on the Longest Common Sequence
  publication-title: Swarm and Evolutionary Computation
– volume: 78
  start-page: 1
  year: 2022
  end-page: 31
  article-title: PSO‐RDAL: Particle Swarm Optimization‐Based Resource‐and Deadline‐Aware Dynamic Load Balancer for Deadline‐Constrained Cloud Tasks
  publication-title: Journal of Supercomputing
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  article-title: A Survey of Swarm Intelligence for Dynamic Optimization: Algorithms and Applications
  publication-title: Swarm and Evolutionary Computation
– volume: 14
  start-page: 217
  issue: 3–4
  year: 2006
  end-page: 230
  article-title: Scheduling Scientific Workflow Applications With Deadline and Budget Constraints Using Genetic Algorithms
  publication-title: Scientific Programming
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  article-title: Archimedes Optimization Algorithm: A New Metaheuristic Algorithm for Solving Optimization Problems
  publication-title: Applied Intelligence
– volume: 78
  start-page: 18
  issue: 1
  year: 2022
  end-page: 42
  article-title: Load Balancing in Cloud Computing Environment Using the Grey Wolf Optimization Algorithm Based on the Reliability: Performance Evaluation
  publication-title: Journal of Supercomputing
– volume: 52
  start-page: 1
  issue: 4
  year: 2019
  end-page: 36
  article-title: A Survey on Scheduling Strategies for Workflows in Cloud Environment and Emerging Trends
  publication-title: ACM Computing Surveys
– volume: 119
  start-page: 1301
  issue: 2
  year: 2021
  end-page: 1320
  article-title: Energy Efficient and Reliability Aware Workflow Task Scheduling in Cloud Environment
  publication-title: Wireless Personal Communications
– volume: 16
  start-page: 872
  issue: 2
  year: 2022
  end-page: 885
  article-title: A Workflow Scheduling Approach With Modified Fuzzy Adaptive Genetic Algorithm in IaaS Clouds
  publication-title: IEEE Transactions on Services Computing
– volume: 18
  start-page: 6264
  year: 2022
  end-page: 6272
  article-title: An Improved Hybrid Swarm Intelligence for Scheduling Iot Application Tasks in the Cloud
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 110
  year: 2021
  article-title: Energy‐Aware Workflow Task Scheduling in Clouds With Virtual Machine Consolidation Using Discrete Water Wave Optimization
  publication-title: Simulation Modelling Practice and Theory
– volume: 29
  start-page: 682
  issue: 3
  year: 2013
  end-page: 692
  article-title: Characterizing and Profiling Scientific Workflows
  publication-title: Future Generation Computer Systems
– volume: 9
  start-page: 155
  year: 2023
  end-page: 169
  article-title: Reliability Enhancement Strategies for Workflow Scheduling Under Energy Consumption Constraints in Clouds
  publication-title: IEEE Transactions on Sustainable Computing
– volume: 14
  start-page: 3117
  issue: 3
  year: 2020
  end-page: 3128
  article-title: A WOA‐Based Optimization Approach for Task Scheduling in Cloud Computing Systems
  publication-title: IEEE Systems Journal
– volume: 104
  start-page: 601
  issue: 3
  year: 2022
  end-page: 625
  article-title: Energy‐Efficient Workflow Scheduling With Budget‐Deadline Constraints for Cloud
  publication-title: Computing
– volume: 2
  start-page: 222
  issue: 2
  year: 2014
  end-page: 235
  article-title: Deadline Based Resource Provisioning and Scheduling Algorithm for Scientific Workflows on Clouds
  publication-title: IEEE Transactions on Cloud Computing
– volume: 27
  start-page: 1
  year: 2024
  end-page: 46
  article-title: A Novel Energy‐Based Task Scheduling in Fog Computing Environment: An Improved Artificial Rabbits Optimization Approach
  publication-title: Cluster Computing
– volume: 34
  issue: 13
  year: 2022
  article-title: Energy and Cost Aware Workflow Scheduling in Clouds With Deadline Constraint
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 39
  start-page: 567
  issue: 10
  year: 2013
  end-page: 585
  article-title: Reliable Workflow Scheduling With Less Resource Redundancy
  publication-title: Parallel Computing
– volume: 33
  start-page: 2079
  issue: 9
  year: 2021
  end-page: 2092
  article-title: Cost‐Efficient Workflow Scheduling Algorithm for Applications With Deadline Constraint on Heterogeneous Clouds
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 16
  start-page: 1807
  year: 2022
  end-page: 1821
  article-title: ET2FA: A Hybrid Heuristic Algorithm for Deadline‐Constrained Workflow Scheduling in Cloud
  publication-title: IEEE Transactions on Services Computing
– volume: 8
  start-page: 538
  issue: 4
  year: 2018
  article-title: A Hybrid Metaheuristic for Multi‐Objective Scientific Workflow Scheduling in a Cloud Environment
  publication-title: Applied Sciences
– volume: 168
  year: 2021
  article-title: Enhanced Multi‐Verse Optimizer for Task Scheduling in Cloud Computing Environments
  publication-title: Expert Systems with Applications
– volume: 78
  start-page: 17423
  issue: 15
  year: 2022
  end-page: 17449
  article-title: GSAGA: A Hybrid Algorithm for Task Scheduling in Cloud Infrastructure
  publication-title: Journal of Supercomputing
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  article-title: Gradient‐Based Optimizer: A New Metaheuristic Optimization Algorithm
  publication-title: Information Sciences
– volume: 16
  start-page: 2929
  issue: 6
  year: 2023
  end-page: 2984
  article-title: An Improved Caledonian Crow Learning Algorithm Based on Ring Topology for Security‐Aware Workflow Scheduling in Cloud Computing
  publication-title: Peer‐to‐Peer Networking and Applications
– ident: e_1_2_9_13_1
  doi: 10.1007/s00607-021-01030-9
– ident: e_1_2_9_21_1
  doi: 10.1109/TII.2022.3148288
– ident: e_1_2_9_36_1
  doi: 10.1109/TCC.2014.2314655
– ident: e_1_2_9_7_1
  doi: 10.1109/JSYST.2019.2960088
– ident: e_1_2_9_22_1
  doi: 10.1007/s11227-022-04539-8
– ident: e_1_2_9_10_1
  doi: 10.1109/TNSM.2021.3125395
– ident: e_1_2_9_9_1
  doi: 10.1155/2018/1934784
– ident: e_1_2_9_24_1
  doi: 10.1007/s10586-024-04396-5
– ident: e_1_2_9_27_1
  doi: 10.1109/TPDS.2021.3134247
– ident: e_1_2_9_12_1
  doi: 10.1002/cpe.6922
– ident: e_1_2_9_11_1
  doi: 10.1016/j.simpat.2021.102323
– ident: e_1_2_9_34_1
  doi: 10.1109/TSUSC.2023.3314759
– ident: e_1_2_9_35_1
  doi: 10.1155/2006/271608
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ins.2020.06.037
– volume: 10
  start-page: 1780
  year: 2020
  ident: e_1_2_9_14_1
  article-title: Evolutionary Multi‐Objective Workflow Scheduling for Volatile Resources in the Cloud. IEEE Transactions on Cloud
  publication-title: Computing
– ident: e_1_2_9_6_1
  doi: 10.1109/TSMC.2018.2881018
– ident: e_1_2_9_2_1
  doi: 10.1002/cpe.1708
– volume: 128
  start-page: 1
  year: 2022
  ident: e_1_2_9_16_1
  article-title: Energy Efficient Optimization With Threshold Based Workflow Scheduling and Virtual Machine Consolidation in Cloud Environment
  publication-title: Wireless Personal Communications
– ident: e_1_2_9_29_1
  doi: 10.1145/3325097
– ident: e_1_2_9_33_1
  doi: 10.1016/j.future.2012.08.015
– ident: e_1_2_9_5_1
  doi: 10.1016/j.future.2020.01.038
– ident: e_1_2_9_3_1
  doi: 10.1016/j.parco.2013.06.003
– ident: e_1_2_9_25_1
  doi: 10.1007/s12083-023-01541-6
– ident: e_1_2_9_37_1
  doi: 10.1109/TSC.2022.3174112
– ident: e_1_2_9_26_1
  doi: 10.1007/s41870-024-01881-3
– ident: e_1_2_9_23_1
  doi: 10.1007/s11227-023-05753-8
– volume: 78
  start-page: 1
  year: 2022
  ident: e_1_2_9_28_1
  article-title: PSO‐RDAL: Particle Swarm Optimization‐Based Resource‐and Deadline‐Aware Dynamic Load Balancer for Deadline‐Constrained Cloud Tasks
  publication-title: Journal of Supercomputing
– ident: e_1_2_9_4_1
  doi: 10.1109/ACCTHPA49271.2020.9213198
– ident: e_1_2_9_8_1
  doi: 10.3390/app8040538
– ident: e_1_2_9_38_1
  doi: 10.1016/j.swevo.2023.101291
– ident: e_1_2_9_32_1
  doi: 10.1016/j.swevo.2016.12.005
– volume: 16
  start-page: 1807
  year: 2022
  ident: e_1_2_9_20_1
  article-title: ET2FA: A Hybrid Heuristic Algorithm for Deadline‐Constrained Workflow Scheduling in Cloud
  publication-title: IEEE Transactions on Services Computing
– ident: e_1_2_9_15_1
  doi: 10.1007/s11277-021-08263-z
– ident: e_1_2_9_30_1
  doi: 10.1007/s10489-020-01893-z
– ident: e_1_2_9_19_1
  doi: 10.1016/j.eswa.2020.114230
– ident: e_1_2_9_17_1
  doi: 10.1007/s11227-021-03810-8
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jestch.2019.03.009
SSID ssj0011031
Score 2.3948648
Snippet ABSTRACT Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used...
Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Archimedes optimization algorithm
Cloud computing
cost‐efficiency
Effectiveness
Energy consumption
Entrapment
Heuristic methods
local escaping operation
metaheuristics
Optimization
Optimization algorithms
optimization techniques
pareto‐optimality
Performance measurement
Resource utilization
Scheduling
Workflow
workflow scheduling
Title Multi‐Objective Workflow Scheduling in Cloud Using Archimedes Optimization Algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.8393
https://www.proquest.com/docview/3174137054
Volume 37
WOSCitedRecordID wos001417240100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0oePAifkYUzZoYb5V-4XaPBCEeDBAjhlvTbXcFAy2hoFd_gr_RX-LstgU9mJh46mU3aWZn5r1Od94AXMqIUxo5puG5QlWrAmZ4jhMYQYMKSzCXh4FuFL6n3a43HLJ-fqtS9cJk-hCrgpuKDJ2vVYAHPK2vRUPDmbhGdHc2oWyj2zZKUL596AzuV_8Q1ACDTC3VNkzk7YX0rGnXi70_wWjNML_zVA00ncp_XnEXdnJ6SZqZP-zBhoj3oVKMbiB5JB_Ak268_Xz_6PGXLOURVTaXk-QNF40Qf1SbOhnHpDVJlhHRNwuIlqlF-BQp6WGqmeY9nKQ5eU7m48VoegiDTvuxdWfkIxaMUA16MZhkgkc3nseE2eCcCjwhxkJJObUFftoxzjgP7ZBj3FsBc6WS07OCkLo84pawnCMoxUksjoFEnEspkVB6ElkZi5jjmk5kSyYdxGHLqsJFYWt_lilp-Jlmsu2joXxlqCrUikPw81hKfWQ4iLQUuWUVrrS5f93vt_pt9Tz568JT2LbVQF_do16D0mK-FGewFb4uxun8PPeoL5QD0f0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gmOhFfEYUdU2Mt0pfuN14IgjBiEAMGG5Nt90VDK_w0Ks_wd_oL3G2D9CDiYmnXnaTzezMfF-nnW8ALmTAKQ0sXXNsoapVHtMcy_I0r0iFIZjNfS9sFK7TRsPpdlkrBTdJL0ykD7EsuKnICPO1CnBVkC6sVEP9ibhCeLfWIGOjF6F7Z24fq5368iOCmmAQyaWamo7EPdGe1c1CsvcnGq0o5neiGiJNNfuvM27DVkwwSSnyiB1IidEuZJPhDSSO5T14CltvP98_mvwlSnpEFc7lYPyGi3qIQKpRnfRHpDwYLwIS_ltAQqFaBFAxI01MNsO4i5OUBs_jaX_eG-5Dp1ppl2taPGRB89WoF41JJnhw7ThM6EXOqcA7YsyXlFNT4Msd44xz3_Q5Rr7hMVsqQT3D86nNA24IwzqA9Gg8EodAAs6llEgpHYm8jAXMsnUrMCWTFiKxYeTgPDG2O4m0NNxINdl00VCuMlQO8sktuHE0zVzkOIi1FNllDi5De_-63y23Kup59NeFZ7BRaz_U3fpd4_4YNk013jfsWM9Dej5diBNY91_n_dn0NHavLyXz1e0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTgIxFL1BMMaN-Iwoak2Mu5F5YadxRYCJRgLEiGE3mU5bwcAM4aFbP8Fv9Ets5wG6MDFxNZs2aW577znTmXsOwIVgFGNm6Zpjc3Vb5RPNsSxf86uYG5zYNPDjRuEWbredfp90c3CT9cIk-hDLCzeVGXG9VgnOJ0xUVqqhwYRfSXi31qBgKw-ZPBQaD26vtfyIoBwMErlUU9Mlcc-0Z3Wzks39iUYrivmdqMZI4xb_tcZt2EoJJqolJ2IHcjzchWJm3oDSXN6Dp7j19vP9o0NfkqKH1MW5GEVvctBAIpBqVEfDENVH0YKh-N8CFAvVSgDlM9SRxWacdnGi2ug5mg7ng_E-9NzmY_1WS00WtEBZvWhEEE7ZteMQrlcpxVzuESGBwBSbXL7cEUooDcyAysw3fGILJahn-AG2KaMGN6wDyIdRyA8BMUqFEJJSOkLyMsKIZesWMwURlkRiwyjBeRZsb5JoaXiJarLpyUB5KlAlKGe74KXZNPMkx5FYiyW7LMFlHO9f53v1blM9j_468Aw2ug3Xa921749h01TuvnHDehny8-mCn8B68Dofzqan6en6AvCS1Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90Objective+Workflow+Scheduling+in+Cloud+Using+Archimedes+Optimization+Algorithm&rft.jtitle=Concurrency+and+computation&rft.au=Kushwaha%2C+Shweta&rft.au=Ravi+Shankar+Singh&rft.au=Prajapati%2C+Kanika&rft.date=2025-02-28&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=4-5&rft_id=info:doi/10.1002%2Fcpe.8393&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon