A Riemannian gradient ascent algorithm with applications to orthogonal approximation problems of symmetric tensors

In this paper, we propose an ascent algorithm by exploiting the Riemannian gradient, which is to solve the optimization problems with orthogonality constraints. It applies to orthogonal approximation problems of symmetric tensors. The iteration possesses some nice properties and has the same express...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied numerical mathematics Ročník 182; s. 235 - 247
Hlavní autoři: Sheng, Zhou, Yang, Weiwei, Wen, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2022
Témata:
ISSN:0168-9274, 1873-5460
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose an ascent algorithm by exploiting the Riemannian gradient, which is to solve the optimization problems with orthogonality constraints. It applies to orthogonal approximation problems of symmetric tensors. The iteration possesses some nice properties and has the same expression as the Polar decomposition. We establish that the global convergence of our algorithm. Preliminary results show that the computational advantage of our algorithm.
ISSN:0168-9274
1873-5460
DOI:10.1016/j.apnum.2022.08.005