On the Treatment of a Dirichlet–Neumann Mixed Boundary Value Problem for Harmonic Functions by an Integral Equation Method

Using an approach which extends the well-known classical integral equation methods, we reduce a mixed boundary value problem for harmonic functions to a system consisting of two integral equations of the second kind. Existence is proved by the Fredholm alternative for compact operators. The integral...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on mathematical analysis Ročník 8; číslo 3; s. 504 - 517
Hlavní autori: González, R., Kress, R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.05.1977
Predmet:
ISSN:0036-1410, 1095-7154
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Using an approach which extends the well-known classical integral equation methods, we reduce a mixed boundary value problem for harmonic functions to a system consisting of two integral equations of the second kind. Existence is proved by the Fredholm alternative for compact operators. The integral equations can be solved apptgximately by successive iterations. Further investigations are made on the spectrum of the boundary integral operator.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1410
1095-7154
DOI:10.1137/0508038