Parameterized Algorithms for Queue Layouts

An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ sets, called queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the queue number of $G$. We present two fixe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of graph algorithms and applications Ročník 26; číslo 3; s. 335 - 352
Hlavní autori: Bhore, Sujoy, Ganian, Robert, Montecchiani, Fabrizio, Nöllenburg, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.06.2022
ISSN:1526-1719, 1526-1719
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ sets, called queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the queue number of $G$. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph $G$ has queue number $1$ and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of $G$. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary $h$.
ISSN:1526-1719
1526-1719
DOI:10.7155/jgaa.00597