A primal–dual approximation algorithm for Minsat

We characterize the optimal solution to the linear programming relaxation of the standard formulation for the minimum satisfiability problem. We give a O(nm2) combinatorial algorithm to solve the fractional version of the minimum satisfiability problem optimally where n(m) is the number of variables...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Applied Mathematics Ročník 319; s. 372 - 381
Hlavní autori: Arif, Umair, Benkoczi, Robert, Gaur, Daya Ram, Krishnamurti, Ramesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.10.2022
Predmet:
ISSN:0166-218X, 1872-6771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We characterize the optimal solution to the linear programming relaxation of the standard formulation for the minimum satisfiability problem. We give a O(nm2) combinatorial algorithm to solve the fractional version of the minimum satisfiability problem optimally where n(m) is the number of variables (clauses). As a by-product, we obtain a 2(1−1∕2k) approximation algorithm for the minimum satisfiability problem where k is the maximum number of literals in any clause.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2021.07.016