The Principal Eigenvalue of Cooperative Systems With Applications to a Model of Nonlinear Boundary Conditions

ABSTRACT In this paper, we study the eigenvalue problem for cooperative systems where the eigenvalue parameter appears on both the equation and the boundary. By utilizing a series of one‐parameter eigenvalue problems, we give a sufficient condition for the existence of the positive eigenvalue, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) Jg. 155; H. 5
Hauptverfasser: Suriguga, Wu, Jianhua, Zhang, Lei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Blackwell Publishing Ltd 01.11.2025
Schlagworte:
ISSN:0022-2526, 1467-9590
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT In this paper, we study the eigenvalue problem for cooperative systems where the eigenvalue parameter appears on both the equation and the boundary. By utilizing a series of one‐parameter eigenvalue problems, we give a sufficient condition for the existence of the positive eigenvalue, which corresponds to the positive eigenfunction, and prove that it is unique when the system is symmetric. Then, we apply the theoretical result to investigate the existence and stability of non‐constant solutions for a general reaction‐diffusion model with nonlinear boundary conditions. In addition, the influence of nonlinear boundary conditions on the long‐time behavior of the solution is illustrated by numerical simulations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.70148