Direct and inverse factorization algorithms of numbers

The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Lietuvos matematikos rinkinys Ročník 60; číslo B; s. 39 - 45
Hlavní autor: Melničenko, Grigorijus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vilniaus universiteto leidykla / Vilnius University Press 05.12.2019
Vilnius University Press
Témata:
ISSN:0132-2818, 2335-898X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and to integer part of √N. Therefore, this algorithm can be called the direct trial division algorithm. We present the inverse trial division algorithm, which divides a given number N into all divisors, starting from the integer part of √N to 2.  
ISSN:0132-2818
2335-898X
DOI:10.15388/LMR.B.2019.15234