Direct and inverse factorization algorithms of numbers
The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and t...
Gespeichert in:
| Veröffentlicht in: | Lietuvos matematikos rinkinys Jg. 60; H. B; S. 39 - 45 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Vilniaus universiteto leidykla / Vilnius University Press
05.12.2019
Vilnius University Press |
| Schlagworte: | |
| ISSN: | 0132-2818, 2335-898X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and to integer part of √N. Therefore, this algorithm can be called the direct trial division algorithm. We present the inverse trial division algorithm, which divides a given number N into all divisors,
starting from the integer part of √N to 2.
|
|---|---|
| ISSN: | 0132-2818 2335-898X |
| DOI: | 10.15388/LMR.B.2019.15234 |