Direct and inverse factorization algorithms of numbers

The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lietuvos matematikos rinkinys Jg. 60; H. B; S. 39 - 45
1. Verfasser: Melničenko, Grigorijus
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Vilniaus universiteto leidykla / Vilnius University Press 05.12.2019
Vilnius University Press
Schlagworte:
ISSN:0132-2818, 2335-898X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and to integer part of √N. Therefore, this algorithm can be called the direct trial division algorithm. We present the inverse trial division algorithm, which divides a given number N into all divisors, starting from the integer part of √N to 2.  
ISSN:0132-2818
2335-898X
DOI:10.15388/LMR.B.2019.15234