Direct and inverse factorization algorithms of numbers

The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Lietuvos matematikos rinkinys Ročník 60; číslo B; s. 39 - 45
Hlavný autor: Melničenko, Grigorijus
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vilniaus universiteto leidykla / Vilnius University Press 05.12.2019
Vilnius University Press
Predmet:
ISSN:0132-2818, 2335-898X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and to integer part of √N. Therefore, this algorithm can be called the direct trial division algorithm. We present the inverse trial division algorithm, which divides a given number N into all divisors, starting from the integer part of √N to 2.  
ISSN:0132-2818
2335-898X
DOI:10.15388/LMR.B.2019.15234