Direct and inverse factorization algorithms of numbers
The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and t...
Uložené v:
| Vydané v: | Lietuvos matematikos rinkinys Ročník 60; číslo B; s. 39 - 45 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Vilniaus universiteto leidykla / Vilnius University Press
05.12.2019
Vilnius University Press |
| Predmet: | |
| ISSN: | 0132-2818, 2335-898X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and to integer part of √N. Therefore, this algorithm can be called the direct trial division algorithm. We present the inverse trial division algorithm, which divides a given number N into all divisors,
starting from the integer part of √N to 2.
|
|---|---|
| ISSN: | 0132-2818 2335-898X |
| DOI: | 10.15388/LMR.B.2019.15234 |