Monotone Simultaneous Paths Embeddings in $\mathbb{R}^d
We study the following problem: Given $k$ paths that share the same vertex set, is there a simultaneous geometric embedding of these paths such that each individual drawing is monotone in some direction? We prove that for any dimension $d\geq 2$, there is a set of $d + 1$ paths that does not admit a...
Uložené v:
| Vydané v: | Discrete mathematics and theoretical computer science Ročník 20 no. 1; číslo Discrete Algorithms; s. 1 - 11 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
DMTCS
05.01.2018
Discrete Mathematics & Theoretical Computer Science |
| Predmet: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study the following problem: Given $k$ paths that share the same vertex set, is there a simultaneous geometric embedding of these paths such that each individual drawing is monotone in some direction? We prove that for any dimension $d\geq 2$, there is a set of $d + 1$ paths that does not admit a monotone simultaneous geometric embedding. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.23638/DMTCS-20-1-1 |