HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING AND DOUBLE PHASE FUNCTIONALS
Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegativ...
Saved in:
| Published in: | Nagoya mathematical journal Vol. 242; pp. 1 - 34 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Nagoya
Cambridge University Press
01.06.2021
|
| Subjects: | |
| ISSN: | 0027-7630, 2152-6842 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent
$p_{1}(\cdot )$
approaching
$1$
and for double phase functionals
$\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$
, where
$a(x)^{1/p_{2}}$
is nonnegative, bounded and Hölder continuous of order
$\unicode[STIX]{x1D703}\in (0,1]$
and
$1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$
. We also establish Sobolev type inequality for Riesz potentials on the unit ball. |
|---|---|
| AbstractList | Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent \(p_{1}(\cdot )\) approaching \(1\) and for double phase functionals \(\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}\), where \(a(x)^{1/p_{2}}\) is nonnegative, bounded and Hölder continuous of order \(\unicode[STIX]{x1D703}\in (0,1]\) and \(1/p_{2}=1-\unicode[STIX]{x1D703}/N>0\). We also establish Sobolev type inequality for Riesz potentials on the unit ball. Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegative, bounded and Hölder continuous of order $\unicode[STIX]{x1D703}\in (0,1]$ and $1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$ . We also establish Sobolev type inequality for Riesz potentials on the unit ball. |
| Author | SHIMOMURA, TETSU MIZUTA, YOSHIHIRO OHNO, TAKAO |
| Author_xml | – sequence: 1 givenname: YOSHIHIRO surname: MIZUTA fullname: MIZUTA, YOSHIHIRO – sequence: 2 givenname: TAKAO orcidid: 0000-0001-6049-811X surname: OHNO fullname: OHNO, TAKAO – sequence: 3 givenname: TETSU surname: SHIMOMURA fullname: SHIMOMURA, TETSU |
| BookMark | eNptkLtugzAYha0qlZqknfoCljpWpLYxYEaHOAGJAuLS24IMMVKiBFIgQ7e-Q9-wT1KidKo6_cP5zvmlbwJGdVMrAG4xmmGErYd6v50RhO0ZZhdgTLBBNJNRMgJjhIilWaaOrsCk67YIIabb-hgoV8Rv359fj2Eci1eYRNwRCQwDmLoCZoGXwjn3ffjspS584rHH576A4iUKAxGkkEdRHHLH9YIV5MECLsLslEcuTwRcZoGTemHA_eQaXFZy16mb3zsF2VKkjqv54cpzuK-V2DJ7zSyRLS2kaFFQWzFmKmMtC0qKskRSUYJthXWLmcSi0rCqtdJJZZCi0tdyrVhB9Sm4O-8e2ub9qLo-3zbHth5e5sTANqaEMn2g8Jkq26brWlXl5aaX_aap-1ZudjlG-clmPtjMTzZzzIbO_Z_Ood3sZfvxL_0DNuRw4Q |
| CitedBy_id | crossref_primary_10_1007_s13163_019_00332_z crossref_primary_10_1002_mma_7425 crossref_primary_10_1007_s00025_023_01858_x |
| Cites_doi | 10.1007/s00205-014-0785-2 10.1080/17476930903394697 10.1016/j.jde.2003.11.007 10.21136/CMJ.1991.102493 10.1016/j.na.2017.09.010 10.1016/j.jmaa.2012.03.041 10.1007/s10231-015-0542-7 10.1007/s11118-010-9205-x 10.1002/mana.200410465 10.1016/j.jmaa.2012.04.043 10.4064/sm163-2-4 10.1007/s00205-003-0301-6 10.1007/s13348-017-0210-x 10.32917/hmj/1147883393 10.5186/aasfm.2014.3913 10.1002/mana.200510609 10.1007/s11117-016-0463-8 10.1016/j.jfa.2015.10.002 10.1090/spmj/1392 10.1080/17476933.2014.908857 10.1007/s00009-013-0285-x 10.1007/978-3-642-18363-8 10.1007/s11512-010-0134-0 |
| ContentType | Journal Article |
| Copyright | 2019 Foundation Nagoya Mathematical Journal |
| Copyright_xml | – notice: 2019 Foundation Nagoya Mathematical Journal |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1017/nmj.2019.18 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2152-6842 |
| EndPage | 34 |
| ExternalDocumentID | 10_1017_nmj_2019_18 |
| GroupedDBID | --Z -~X 09C 09E 0R~ 123 29M 2WC 6OB 7.U 8FE 8FG AAAZR AABES AABWE AACJH AAGFV AAKTX AANRG AARAB AASVR AAUKB AAXMD AAYXX ABBZL ABDNZ ABGDZ ABJCF ABJNI ABLJU ABMWE ABQTM ABROB ABUFD ABVKB ABVZP ABXAU ABXHF ABZCX ACBMC ACDLN ACGFS ACIPV ACIWK ACNCT ACUIJ ACYZP ACZBM ACZWT ADCGK ADDNB ADFEC ADKIL ADOVH ADOVT ADVJH ADYHW AEBAK AEHGV AENCP AENEX AENGE AFFHD AFFOW AFFUJ AFKQG AFKRA AFLVW AFZFC AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AJAHB AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AMVHM AQJOH ARZZG ATUCA AUXHV AYIQA BBLKV BCGOX BENPR BESQT BGLVJ BJBOZ BLZWO BMAJL CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CITATION CJCSC DOHLZ E3Z EBS EGQIC EJD HCIFZ H~9 IH6 IOEEP IOO JHPGK JQKCU KAFGG KCGVB KFECR L6V L7B LHUNA LW7 M7S NHB NIKVX NZEOI OHT OK1 OVT P2P PHGZM PHGZT PQGLB PTHSS PUASD PYCCK RAMDC RBU RBV RCA RDU ROL RPE S6U SAAAG T9M TKC TN5 TR2 UT1 WFFJZ WS9 XOL XSB YNT YQT ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c176t-6c09a70e4bb49e886e5dab42bcc0ae4219e13786274a57fde32f52bf3dade8b43 |
| IEDL.DBID | M7S |
| ISSN | 0027-7630 |
| IngestDate | Fri Jul 25 12:05:59 EDT 2025 Sat Nov 29 05:41:07 EST 2025 Tue Nov 18 20:58:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c176t-6c09a70e4bb49e886e5dab42bcc0ae4219e13786274a57fde32f52bf3dade8b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6049-811X |
| PQID | 2519142483 |
| PQPubID | 2046271 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_2519142483 crossref_citationtrail_10_1017_nmj_2019_18 crossref_primary_10_1017_nmj_2019_18 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-00 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Nagoya |
| PublicationPlace_xml | – name: Nagoya |
| PublicationTitle | Nagoya mathematical journal |
| PublicationYear | 2021 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | S0027763019000187_r13 S0027763019000187_r12 S0027763019000187_r15 S0027763019000187_r14 S0027763019000187_r17 S0027763019000187_r16 S0027763019000187_r19 S0027763019000187_r18 Cruz-Uribe (S0027763019000187_r8) 2003; 28 Mizuta (S0027763019000187_r25) 2000; 20 S0027763019000187_r11 S0027763019000187_r10 S0027763019000187_r3 S0027763019000187_r23 S0027763019000187_r4 S0027763019000187_r5 S0027763019000187_r26 S0027763019000187_r6 S0027763019000187_r1 S0027763019000187_r2 S0027763019000187_r7 Mizuta (S0027763019000187_r24) 2009 S0027763019000187_r9 S0027763019000187_r20 S0027763019000187_r22 Stein (S0027763019000187_r27) 1970 S0027763019000187_r21 |
| References_xml | – ident: S0027763019000187_r9 doi: 10.1007/s00205-014-0785-2 – ident: S0027763019000187_r4 doi: 10.1080/17476930903394697 – ident: S0027763019000187_r11 doi: 10.1016/j.jde.2003.11.007 – ident: S0027763019000187_r19 doi: 10.21136/CMJ.1991.102493 – ident: S0027763019000187_r16 doi: 10.1016/j.na.2017.09.010 – ident: S0027763019000187_r14 doi: 10.1016/j.jmaa.2012.03.041 – ident: S0027763019000187_r7 doi: 10.1007/s10231-015-0542-7 – ident: S0027763019000187_r5 doi: 10.1007/s11118-010-9205-x – ident: S0027763019000187_r17 doi: 10.1002/mana.200410465 – ident: S0027763019000187_r2 doi: 10.1016/j.jmaa.2012.04.043 – volume-title: Singular Integrals and Differentiability Properties of Functions year: 1970 ident: S0027763019000187_r27 – ident: S0027763019000187_r6 doi: 10.4064/sm163-2-4 – ident: S0027763019000187_r12 doi: 10.1007/s00205-003-0301-6 – volume: 20 start-page: 201 year: 2000 ident: S0027763019000187_r25 article-title: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions publication-title: Analysis (Munich) – ident: S0027763019000187_r20 doi: 10.1007/s13348-017-0210-x – ident: S0027763019000187_r13 doi: 10.32917/hmj/1147883393 – ident: S0027763019000187_r21 doi: 10.5186/aasfm.2014.3913 – volume: 28 start-page: 223 year: 2003 ident: S0027763019000187_r8 article-title: The maximal function on variable L p spaces publication-title: Ann. Acad. Sci. Fenn. Ser. Math. – ident: S0027763019000187_r23 doi: 10.1002/mana.200510609 – ident: S0027763019000187_r15 doi: 10.1007/s11117-016-0463-8 – ident: S0027763019000187_r18 doi: 10.1016/j.jfa.2015.10.002 – ident: S0027763019000187_r3 doi: 10.1090/spmj/1392 – start-page: 193 volume-title: Potential Theory and Stochastics in Albac year: 2009 ident: S0027763019000187_r24 – ident: S0027763019000187_r22 doi: 10.1080/17476933.2014.908857 – ident: S0027763019000187_r26 doi: 10.1007/s00009-013-0285-x – ident: S0027763019000187_r10 doi: 10.1007/978-3-642-18363-8 – ident: S0027763019000187_r1 doi: 10.1007/s11512-010-0134-0 |
| SSID | ssj0008393 |
| Score | 2.2374563 |
| Snippet | Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent
$p_{1}(\cdot )$... Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent \(p_{1}(\cdot )\)... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | Euclidean space Mathematical functions |
| Title | HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING AND DOUBLE PHASE FUNCTIONALS |
| URI | https://www.proquest.com/docview/2519142483 |
| Volume | 242 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2152-6842 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008393 issn: 0027-7630 databaseCode: M7S dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2152-6842 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008393 issn: 0027-7630 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDnBgR-zygQMgBbI4tXNCbnEVpJJESQoFIUWx40psZWnhzD_wh3wJcZIWkBAXzplDlLHfxOM37wGwk1cMYdtdpBn58UpDhihIAI4mHJPUUp5jZuENeNbCnkc6HSeoGm79ilY5xMQCqLMHoXrkh2rCUk1lEevo8UlTrlHqdrWy0BgHk0olwSyoe9EIifPiX94wm1jL95Fezecpyeje_Y3idTkHyu3je0X6CchFlWnO_ff95sFs9X8JabkgFsCY7C2CmdOROGt_Cdy6LLz8eHs_9cOQXcAooA0WQd-Dsctgfh6MYZ22WvD8JHbhGQ1PaL3FIOsEvse8GNIgCH3aUF0ueLVrXO1B6h3DY7-togKXRgw2216j1NiNlkG7yeKGq1WeC5owcG2g1YTupFiXiHPkSEJq0s5SjkwuhJ5KlOObNCxMlGNPauNuJi2za5u8a2VpJglH1gqY6D305CqAyjEcZZkhONKRdPTUlhnngtsSY4IstAb2h989EZUgufLFuEtK5hlO8iQlKkmJQdbAzij4sdTh-D1sc5idpNqM_eQrNet_P94A06airBRNlk0wMXh-kVtgSrwOrvvP22Cyzrwg3C7W2CfoWtDO |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwEB2VgkR54I4oFPBDkQApkIuzTh4Qcne9yqrZJEqy7baqlMaOV-K2Ld0FxBv_wH_wUXwJdi4LSIi3PvCcUaTEx2c845k5ANvKYwjXnWHDUuGVgS1RFwH4hvBtr1dyxZm1NuBeSKLIm079ZA2-d70wuqyy48SaqKsToXPkL3SHpe7K8pxXpx8MrRqlb1c7CY0GFrvyy2cVsi1ejgZqfR_b9pDl_cBoVQUMYZHe0ugJ0y-JKTHn2Jee15NuVXJscyHMUmK1g6XlEE9r0pQumVXSsWeuzWdOVVbS49hR770AF7Fm_7pUMFsxvzpsNDfaNjHUvjXbfkA9onr-_o2uI_Ofa3WR3z3gnw6g9mrDa__b_7gOV9vzM6IN4G_AmpzfhCvj1fDZxS14G7D08MfXb-M4TdkByhLaZxmKI5QHDKl4N0c7NAzR_igP0B5NR3QnZIhNkzhiUY5okqQx7essHjp6Yh09RTQaoEE80VZJQDOGhpOo38wQzm7D5Fy-9g6sz0_m8i4grYiOq8oSHJtY-mbpyopzwV1JiIcdvAnPunUuRDtwXet-vCuayjpSKFAUGhSF5W3C9sr4tJkz8nezrQ4NRUs2i-IXFO79-_EjuBzk47AIR9HufdiwdXlOnVDagvXl2Uf5AC6JT8vXi7OHNa4RHJ83cH4Cs8QuIA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBSFY8K4oFPCiSIAUmoczdhYIuTMZZdQ0iZJMGapKIXYcide0dAYQO_6Bv-Fz-BLsPAaQELsuWMeKZPv4Xt_rc-8B2FYeQ7hujQ1LhVcGtkRDAvAM4dl0UHJlMxttwIOQRBGdzbxkDb73tTCaVtnbxMZQV8dC58h3dIWlrsqizk7d0SKS0fj5yQdDK0jpl9ZeTqOFyJ788lmFb4tnk5Ha64e2PfbzYWB0CgOGsMhgaQyE6ZXElJhz7ElKB9KtSo5tLoRZSqxOs7QcQrU-TemSupKOXbs2r52qrCTl2FH_PQfnCVYzamiD2coLqItH-7ptE0OdYbOrDdTtqufv32hOmfdUK4387g3_dAaNhxtf_Z_X5hpc6e7ViLUH4TqsyfkNuLy_akq7uAlvAz89_PH1236cpv5LlCVs6GcojlAe-EjFwTnaZWGIXkzyAB2wdMJ2Qx_5sySO_ChHLEnSmA11dg8dPbKOHiMWjdAonupRScAyH42n0bDtLZzdgumZzHYD1ufHc3kbkFZKx1VlCY5NLD2zdGXFueCuJIRiB2_Ck37PC9E1Ytd6IO-KlnFHCgWQQgOksOgmbK8Gn7T9R_4-bKtHRtEZoUXxCxZ3_v35AVxUeCnCSbR3Fy7ZmrXT5Jm2YH15-lHegwvi0_L14vR-A3EEr84aNz8BuOo25w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HERZ%E2%80%93MORREY+SPACES+ON+THE+UNIT+BALL+WITH+VARIABLE+EXPONENT+APPROACHING+%5C%281%5C%29+AND+DOUBLE+PHASE+FUNCTIONALS&rft.jtitle=Nagoya+mathematical+journal&rft.au=Mizuta%2C+Yoshihiro&rft.au=Ohno%2C+Takao&rft.au=Shimomura%2C+Tetsu&rft.date=2021-06-01&rft.pub=Cambridge+University+Press&rft.issn=0027-7630&rft.eissn=2152-6842&rft.volume=242&rft.spage=1&rft.epage=34&rft_id=info:doi/10.1017%2Fnmj.2019.18&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-7630&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-7630&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-7630&client=summon |