HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING AND DOUBLE PHASE FUNCTIONALS
Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegativ...
Uloženo v:
| Vydáno v: | Nagoya mathematical journal Ročník 242; s. 1 - 34 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Nagoya
Cambridge University Press
01.06.2021
|
| Témata: | |
| ISSN: | 0027-7630, 2152-6842 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent
$p_{1}(\cdot )$
approaching
$1$
and for double phase functionals
$\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$
, where
$a(x)^{1/p_{2}}$
is nonnegative, bounded and Hölder continuous of order
$\unicode[STIX]{x1D703}\in (0,1]$
and
$1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$
. We also establish Sobolev type inequality for Riesz potentials on the unit ball. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0027-7630 2152-6842 |
| DOI: | 10.1017/nmj.2019.18 |