Attribution of Responsibility for Short-Duration Voltage Variations in Power Distribution Systems via QGIS, OpenDSS, and Python Language

Short-Duration Voltage Variations (SDVVs) are phenomena that significantly impact power quality. Although they typically last no longer than three minutes, such events can disrupt load operations and cause substantial production losses. This study presents an enhanced methodology for determining whe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications pp. 1 - 16
Main Authors: de Souza, Arthur Gomes, Passatuto, Luiz Arthur Tarralo, Bernardes, Wellington Maycon Santos, Freitas, Luiz Carlos Gomes, Resende, Enio Costa
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:0093-9994, 1939-9367
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Short-Duration Voltage Variations (SDVVs) are phenomena that significantly impact power quality. Although they typically last no longer than three minutes, such events can disrupt load operations and cause substantial production losses. This study presents an enhanced methodology for determining whether an SDVV event originates upstream or downstream of the point of common coupling between two agents interconnected through a transformer. Building upon the work of Ferreira et al., whose original approach was applied to a circuit using MATLAB/Simulink, this research advances the methodology by applying it to both real and benchmark distribution systems using open-source tools, namely QGIS, OpenDSS, and Python™. The well-known IEEE 34-Bus Test System has been used to verify the methodology's generalizability. The method was also further validated through tests conducted on two actual Brazilian distribution feeders in Uberlandia, Minas Gerais: one supplying large industrial consumers such as a rice mill and a carbonated beverages factory, and the other serving a municipal wastewater treatment plant and a large photovoltaic plant. By using real, detailed and georeferenced data, the approach ensures an accurate representation of both the network topology and the installed equipment. The results confirm that the proposed methodology reliably identifies the origin of SDVV events. A key contribution of this study is that the attribution of responsibility remains robust regardless of variations in transformer winding configurations, fault resistance, circuit topology, load characteristics, or the presence of distributed generation. These findings demonstrate the accessibility, robustness and practical applicability, offering a valuable tool for utilities and researchers aiming to enhance power quality and accountability in distribution networks.
AbstractList Short-Duration Voltage Variations (SDVVs) are phenomena that significantly impact power quality. Although they typically last no longer than three minutes, such events can disrupt load operations and cause substantial production losses. This study presents an enhanced methodology for determining whether an SDVV event originates upstream or downstream of the point of common coupling between two agents interconnected through a transformer. Building upon the work of Ferreira et al., whose original approach was applied to a circuit using MATLAB/Simulink, this research advances the methodology by applying it to both real and benchmark distribution systems using open-source tools, namely QGIS, OpenDSS, and Python™. The well-known IEEE 34-Bus Test System has been used to verify the methodology's generalizability. The method was also further validated through tests conducted on two actual Brazilian distribution feeders in Uberlandia, Minas Gerais: one supplying large industrial consumers such as a rice mill and a carbonated beverages factory, and the other serving a municipal wastewater treatment plant and a large photovoltaic plant. By using real, detailed and georeferenced data, the approach ensures an accurate representation of both the network topology and the installed equipment. The results confirm that the proposed methodology reliably identifies the origin of SDVV events. A key contribution of this study is that the attribution of responsibility remains robust regardless of variations in transformer winding configurations, fault resistance, circuit topology, load characteristics, or the presence of distributed generation. These findings demonstrate the accessibility, robustness and practical applicability, offering a valuable tool for utilities and researchers aiming to enhance power quality and accountability in distribution networks.
Author Freitas, Luiz Carlos Gomes
Resende, Enio Costa
Bernardes, Wellington Maycon Santos
Passatuto, Luiz Arthur Tarralo
de Souza, Arthur Gomes
Author_xml – sequence: 1
  givenname: Arthur Gomes
  surname: de Souza
  fullname: de Souza, Arthur Gomes
  email: arthurgs@ufu.br
  organization: Department of Electric Power Systems (DEPSEE), Faculty of Electrical Engineering (FEELT), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
– sequence: 2
  givenname: Luiz Arthur Tarralo
  surname: Passatuto
  fullname: Passatuto, Luiz Arthur Tarralo
  email: tarralo@ufu.br
  organization: Department of Electric Power Systems (DEPSEE), Faculty of Electrical Engineering (FEELT), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
– sequence: 3
  givenname: Wellington Maycon Santos
  orcidid: 0000-0001-7401-3478
  surname: Bernardes
  fullname: Bernardes, Wellington Maycon Santos
  email: wmsbernardes@ufu.br
  organization: Department of Electric Power Systems (DEPSEE), Faculty of Electrical Engineering (FEELT), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
– sequence: 4
  givenname: Luiz Carlos Gomes
  orcidid: 0000-0002-1036-2801
  surname: Freitas
  fullname: Freitas, Luiz Carlos Gomes
  email: lcgfreitas@ufu.br
  organization: Department of Electric Power Systems (DEPSEE), Faculty of Electrical Engineering (FEELT), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
– sequence: 5
  givenname: Enio Costa
  surname: Resende
  fullname: Resende, Enio Costa
  email: eniocostaresende@ufu.br
  organization: Department of Electric Power Systems (DEPSEE), Faculty of Electrical Engineering (FEELT), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
BookMark eNpFkMtuwjAQRa2KSgXafRdd-AMa6kniBC8RtBQJCdpQtpETxuAKbGSHVvmDfnbDQ2I1o9G5d6TTIS1jDRLyCKwHwMTLYjLohSzkvSiBfsLghrRBRCIQUZK2SJsxEQVCiPiOdLz_ZgxiDnGb_A2qyuniUGlrqFX0E_3eGq8LvdVVTZV1NNtYVwWjg5MnaGm3lVwjXUqnTxdPtaFz-4uOjrS_tmW1r3Dn6Y-W9GM8yZ7pbI9mlDWLNCs6r6tNQ02lWR-avntyq-TW48NldsnX2-ti-B5MZ-PJcDANSkgTCGKMuehzgAJLJWJMV7hKQSLnoUiKVEIaKcUgEkUfBIeE8ZCpsECelFxhzKIuYefe0lnvHap87_ROujoHlh9N5o3J_Ggyv5hsIk_niEbEKw7NgzRMon-wAXLX
CODEN ITIACR
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIA.2025.3618601
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9367
EndPage 16
ExternalDocumentID 10_1109_TIA_2025_3618601
11195726
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
VJK
ID FETCH-LOGICAL-c1761-4e4598511becf94e7ded71ae55296b7a173ff0139b8195160520f2be56c5fe403
IEDL.DBID RIE
ISSN 0093-9994
IngestDate Sat Nov 29 06:55:51 EST 2025
Wed Nov 19 08:26:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1761-4e4598511becf94e7ded71ae55296b7a173ff0139b8195160520f2be56c5fe403
ORCID 0000-0001-7401-3478
0000-0002-1036-2801
OpenAccessLink https://ieeexplore.ieee.org/document/11195726
PageCount 16
ParticipantIDs crossref_primary_10_1109_TIA_2025_3618601
ieee_primary_11195726
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on industry applications
PublicationTitleAbbrev TIA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014514
Score 2.4597933
Snippet Short-Duration Voltage Variations (SDVVs) are phenomena that significantly impact power quality. Although they typically last no longer than three minutes,...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Distribution networks
MATLAB
OpenDSS
phenomenon responsibility
Power quality
Python
QGIS
short-duration voltage variation
Software packages
Transformers
Voltage control
Voltage fluctuations
Title Attribution of Responsibility for Short-Duration Voltage Variations in Power Distribution Systems via QGIS, OpenDSS, and Python Language
URI https://ieeexplore.ieee.org/document/11195726
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014514
  issn: 0093-9994
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0IcaELnxjxlVm4MbHQxzDTLomIkhCCgoRdM21nIolpDQIJf-Bne287RTYu3E36SjOn6Zz7mHMIubVZEgFTCCxH-Ghh5npWJBizGHdlDAw7tnMfsklfDAb-dBoMzWb1fC-MUipvPlMNHOa1_CSLl5gqazqoTyZcXiEVIXixWWtTMmBGyBtCdAtYDytrknbQHPfaEAm6rYaH6vDG_6Vcg7ZMVfI1pXv4z7c5IgeGPNJ2gfYx2VHpCdnfkhQ8Jd_txcbDimaavm73wK4pUFQ6egfKbXWWBfZ0kn0s4KdCJxA1F-k7OkvpEN3TaAdldcunGXFzuppJ-vLUG91T7EbpjGAg04QO1yhDQPsmAVojb93H8cOzZdwWrNgRHAJJBZAh_wJUdcCUSFQiHKlaWJmNhHSEpzUSxghLbw7HBhrtRqrFsWGN2d4ZqaZZqs4JDaT0OZfKTeCE5tzn2o2VjgKpEgUEsE7uyvkPPwtRjTAPRuwgBKxCxCo0WNVJDaf-9zoz6xd_HL8ke3h7kSW5ItXFfKmuyW68Wsy-5jf5J_MDEyTABw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4MwGG50mqgHP2ecnz14MZENSmnhuDh1i7hMN5fdSIESlxhmJluyf-DPti-UuYsHbw2QhvQh9Hk_-jwIXZs0DhVT8AyLu2BhRmwj5JQalBERKYYdmbkP2dDn3a47Gnk9fVg9Pwsjpcybz2QdhnktP55EM0iVNSzQJ-OEraMNh1JiFse1lkUDqqW8VZBuKN5Dy6qk6TUGnaaKBYlTt0EfXjvAlLvQiq1Kvqs87P3zffbRrqaPuFngfYDWZHqIdlZEBY_QdzNbuljhSYJfV7tgF1iRVNx_V6TbaM0K9PFw8pGp3woeqri5SODhcYp74J-GWyCsW86m5c3xfCzwy2Onf4uhH6XVVwORxri3ACEC7OsUaBW9PdwP7tqG9lswIoszFUpKBRowMIVr4lHJYxlzS0gHarMhFxa3kwQoYwjFN4tBC01CQukwaFmjpn2MKukklScIe0K4jAlJYnUjYcxlCYlkEnpCxlJRwBq6Kdc_-CxkNYI8HDG9QGEVAFaBxqqGqrD0v8_pVT_94_oV2moPnv3A73SfztA2TFXkTM5RJZvO5AXajObZ-Gt6mX8-Pzkjw04
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribution+of+Responsibility+for+Short-Duration+Voltage+Variations+in+Power+Distribution+Systems+via+QGIS%2C+OpenDSS%2C+and+Python+Language&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=de+Souza%2C+Arthur+Gomes&rft.au=Passatuto%2C+Luiz+Arthur+Tarralo&rft.au=Bernardes%2C+Wellington+Maycon+Santos&rft.au=Freitas%2C+Luiz+Carlos+Gomes&rft.date=2025&rft.issn=0093-9994&rft.eissn=1939-9367&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTIA.2025.3618601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIA_2025_3618601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon